Growth-dominated extreme topography development on ionbombarded wafers of InP is reported and is explained in terms of the micro region model presented in summary form. This model postulates the existence of an ion-bombardment-produced ensemble of crystallites and non-crystalline aggregations of atoms (composed of the substrate material, of dopant and of oxygen from the native oxide layer) where the majority of InP micro regions is so small (nanometer dimensions) that most interstitials created in collision events between bombarding ions and atoms of the micro region can reach an interfacial boundary rather than recombine with a vacancy from the same or another collision event. These atoms are then transported via interfacial boundaries and over the surface to screw dislocations where crystal stubs proceed to grow until the damage rate by ion bombardment overtakes the growth rate. Ion-bombardment-induced compressive stresses favour diffusion towards the surface. Temperature transients within micro regions assist both interfacial diffusion and damage repair. The topography is a result of competition between growth and sputtering. Different growth rates cause different topographies. The development of an extreme topography can be suppressed by oxygen flooding of the sputtered surface, by simultaneous electron beam scanning, as well as by Cs+ ion bombardment. 相似文献
In this research, we use the original Peng-Robinson (PR) equation of state (EOS) for pure fluids and develop a crossover cubic equation of state which incorporates the scaling laws asymptotically close to the critical point and it is transformed into the original cubic equation of state far away from the critical point. The modified EOS is transformed to ideal gas EOS in the limit of zero density. A new formulation for the crossover function is introduced in this work. The new crossover function ensures more accurate change from the singular behavior of fluids inside the regular classical behavior outside the critical region. The crossover PR (CPR) EOS is applied to describe thermodynamic properties of pure fluids (normal alkanes from methane to n-hexane, carbon dioxide, hydrogen sulfide and R125). It is shown that over wide ranges of state, the CPR EOS yields the thermodynamic properties of fluids with much more accuracy than the original PR EOS. The CPR EOS is then used for mixtures by introducing mixing rules for the pure component parameters. Higher accuracy is observed in comparison with the classical PR EOS in the mixture critical region. 相似文献
In spite of its simplicity and a well-defined theoretical basis, the Flory–Guggenheim approach is conventionally regarded as inapplicable to off-lattice system since the insertion probability of the approach does not account for the excluded region, existing in the off-lattice system. In this work, we propose the insertion probability accounting for the excluded region of off-lattice fluids and derive a new version of equation of state (EOS) for hard-sphere chains basing on the Flory–Guggenheim approach. To investigate the behavior of the excluded regions, a Monte Carlo sampling was performed for hard disks and the various excluded regions were found to have different density dependence. On the basis of the simulation result, we formulated the insertion probability for hard-sphere and that of hard-sphere chain which accounts for the effect of chain-connectivity on the monomer insertion. The proposed insertion probability was found to correctly predict the simulation data for monomer and correctly correlate the simulation data for chain fluids. The resulting EOS was found to meet closed-packed limit and predict the simulation data of compressibility factor for monomer and chains with a reasonable degree of accuracy. When compared with other off-lattice based EOS, it shows a comparable or better result. For second virial coefficient of chain molecules, the model was found to reasonably predict the simulation data. 相似文献
Data on methods for the synthesis of monocyclic and polynuclear NH-unsubstituted tetrazoles are reviewed.Dedicated to Prof. H. Elguero on the occasion of his 65th birthday.St. Petersburg State Technological Institute (Technical University), St. Petersburg 198013, Russia; Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 867–884, July, 2000. 相似文献
A fluorescence quenching method was developed for determination of microamounts of nucleic acids by using brilliant cresyl blue (BCB) as a new red region fluorescent probe. In aqueous hexylmethylene tetramine solution, BCB showed maximum excitation and emission wavelengths at 626 and 670 nm, respectively, and the fluorescence of BCB could be greatly quenched by DNA (or RNA). Under optimal conditions, the calibration graphs are linear over the range of 0.02–0.80 μg/ml for SM DNA and 0.25–1.5 μg/ml for yeast RNA. The corresponding detection limits are 7 ng/ml for SM DNA and 25 ng/ml for yeast RNA, respectively. SM DNA can be determinated in the presence of 40% (w/w) RNA, and the relative standard deviation of six measurements is 2.5% for 500 ng/ml SM DNA. The result of the determination of golden staphylococcus DNA by this method was satisfactory. 相似文献
Floristic composition, community structure and soil moisture and nutrient contents in abandoned fields of different ages were analyzed to clarify the regenerative aspects of succession as a tool for vegetation restoration. The results indicated that secondary succession in this region can be interpreted as an auto-succession: there are main changes in species-relative abundance and species turnover. Annual or biennial species (e.g. Artemisia scoparia), acted as pioneers and strongly dominated the early stages. Then, they underwent a progressive decline, while forbs (e.g. Artemisia sacrorum) and grasses (e.g. Xanthium sibiricum) had their peak abundance at intermediate stages. Dwarf shrubs (e.g. Lespedeza dahurica) and short rhizome grass (e.g. Bothriochloa ischaemum) appeared at mid-succession stage and gradually increased in abundance during succession, becoming dominant at late stages. The first axis of detrended correspondence canonical analysis arranged the sites according to their fallow time, indicating a successional sere. The second axis, associated with diverging pathways of regeneration, correlated with topographic factors and soil moisture and nutrition. Structural divergence between plots increased as succession went on, attained the highest at the mid-succession stage, decreased at the late stage.
Soil moisture and available phosphorus content decreased steadily with field age after their abandonment, whereas pools of organic matter, total and available nitrogen, potassium and total phosphorus increased with field age. The pace and direction of recovery of native vegetation and natural soil properties in these abandoned fields resembled classic old-field succession, which is a form of secondary succession that often serves as a template for guiding restoration efforts. Interface between the abandoned field soil and plant system was crucial to the above process. Our current study supported the generally accepted hypothesis in the succession literature. 相似文献