首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   192篇
  国内免费   32篇
化学   853篇
综合类   3篇
物理学   54篇
  2024年   1篇
  2023年   8篇
  2022年   17篇
  2021年   25篇
  2020年   66篇
  2019年   42篇
  2018年   28篇
  2017年   25篇
  2016年   62篇
  2015年   75篇
  2014年   48篇
  2013年   47篇
  2012年   56篇
  2011年   55篇
  2010年   34篇
  2009年   27篇
  2008年   41篇
  2007年   53篇
  2006年   38篇
  2005年   38篇
  2004年   23篇
  2003年   32篇
  2002年   6篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   16篇
  1996年   10篇
  1995年   7篇
  1993年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有910条查询结果,搜索用时 31 毫秒
91.
The effect of carbenes as Lewis donor groups on the homoaromaticity of mono‐ and bicyclic organic molecules is surveyed. The search for viable carbene‐stabilised homoaromatics resulted in a large amount of rejected candidates as well as nine promising candidates that are further analysed for their homoaromaticity by using a number of metrics. Of these, five appeared to show modest homoaromaticity, whereas another compound showed a level of homoaromaticity comparable with the homotropylium cation benchmark compound. Isoelectronic analogues and constitutional isomers of the lead compound were investigated, however, none of these showed comparable homoaromaticity. The implications of these calculations on the design of donor‐stabilised homoaromatics are discussed.  相似文献   
92.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   
93.
94.
The synthesis of a new series of free‐base, NiII and ZnII 2,3,12,13‐tetra(ethynyl)‐5,10,15,20‐tetraphenyl porphyrins is described. Upon heating, two of the four ethynyl moieties undergo Bergman cyclization to afford the monocyclized 2,3‐diethynyl‐5,20‐diphenylpiceno[10,11,12,13,14,15‐jklmn]porphyrin in 30 %, 10 %, and trace yields, respectively. The structures of all products were investigated by using quantum chemical calculations and the free‐base analogue was isolated and crystallized; all compounds show significant deviation from the idealized planar structure. No fully‐cyclized bispiceno[20,1,2,3,4,5,10,11,12,13,14,15‐fghij]porphyrin was isolated from the reaction mixture. To understand why only two of the four enthynyl groups undergo Bergman cyclization, the reaction coordinates were examined by using DFT at the PWPW91/cc‐pVTZ(‐f) level coupled to a continuum solvation model. The barrier to cyclization of the second pair of ethynyl groups was found to be 5.5 kcal mol?1 higher than the first, suggesting a negative cooperative effect and significantly slower rate for the second cyclization. Cyclization reactions for model porphyrin–enediynes with ethene‐ and H‐functionality substitutions at the meso‐phenyl rings were also examined, and found to have a similar barrier to diradical formation for the second cyclization event as for the first in these highly planar molecules. By enforcing an artificial 30° cant in two of the pyrrole rings of the porphyrin, the second barrier was increased by 2 kcal mol?1 in the ethene model system; this suggests that the disruption of the π conjugation of the extended porphyrin structure is the cause of the increased barrier to the second cyclization event.  相似文献   
95.
The nature of the bonding and the aromaticity of the heavy Group 14 homologues of cyclopropenylium cations E3H3+ and E2H2E′H+ (E, E′=C–Pb) have been investigated systematically at the BP86/TZ2P DFT level by using several methods. Aromatic stabilization energies (ASE) were evaluated from the values obtained from energy decomposition analysis (EDA) of charged acyclic reference molecules. The EDA‐ASE results compare well with the extra cyclic resonance energy (ECRE) values given by the block localized wavefunction (BLW) method. Although all compounds investigated are Hückel 4n+2 π electron species, their ASEs indicate that the inclusion of Group 14 elements heavier than carbon reduces the aromaticity; the parent C3H3+ ion and Si2H2CH+ are the most aromatic, and Pb3H3+ is the least so. The higher energies for the cyclopropenium analogues reported in 1995 employed an isodesmic scheme, and are reinterpreted by using the BLW method. The decrease in the strength of both the π cyclic conjugation and the aromaticity in the order C?Si>Ge>Sn>Pb agrees reasonably well with the trends given by the refined nucleus‐independent chemical shift NICS(0)πzz index.  相似文献   
96.
97.
98.
The resonance energies (REs) of neutral three membered ring analogs of the cyclopropenyl cation, computed using block localized wave function (BLW) methods, reveal considerable variations. The RE's of cyclopropenes substituted with exocyclic double bonded groups C?X, (X = O, NH, CH2, S, PH, SiH2) increase with the electronegativity of X in the same row (SiH2 < PH < S and CH2 < NH < O). The extra cyclic resonance energies (ECREs) (an energetic measure of aromaticity based on comparisons with the RE's of acyclic models) of these derivatives range from +10.5 kcal/mol for cyclopropenone (X = O) (somewhat aromatic; the benzene ECRE is 29.3 kcal/mol) to ?2.4 kcal/mol (slightly antiaromatic) for X = SiH2. Additional disubstitution of the C?C double bond by X′ groups (X′ = CH3, NH2, OH, SiH3, PH2, SH) increases the REs considerably, but has only small effects on the ECREs. Even the ECRE of deltic acid (X = O, X′ = OH) is only increased to +13.3 kcal/mol. The conclusion based on ECRE's, that all 12 of the three membered rings are only marginally aromatic/antiaromatic, is supported by the satisfactorily plot (R2 = 0.92) of ECRE against values of NICS(0)πzz (a superior nucleus chemical independent shift magnetic index of aromaticity), which range only from ?6.1 ppm (diatropic) for deltic acid (cf., ?35.5 ppm for benzene and ?14.2 ppm for the parent cyclopropenium ion) to +8.9 ppm (paratropic) for the silicon derivative, X = SiH2, X′ = SiH3. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号