首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   192篇
  国内免费   32篇
化学   853篇
综合类   3篇
物理学   54篇
  2024年   1篇
  2023年   8篇
  2022年   17篇
  2021年   25篇
  2020年   66篇
  2019年   42篇
  2018年   28篇
  2017年   25篇
  2016年   62篇
  2015年   75篇
  2014年   48篇
  2013年   47篇
  2012年   56篇
  2011年   55篇
  2010年   34篇
  2009年   27篇
  2008年   41篇
  2007年   53篇
  2006年   38篇
  2005年   38篇
  2004年   23篇
  2003年   32篇
  2002年   6篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   16篇
  1996年   10篇
  1995年   7篇
  1993年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有910条查询结果,搜索用时 15 毫秒
131.
As a prominent member of the vitamin E group, α-tocopherol is an important lipophilic antioxidant. It has a special oxidation chemistry that involves phenoxyl radicals, quinones and quinone methides. During the oxidation to the ortho-quinone methide, an intermediary zwitterion is formed. This aromatic intermediate turns into the quinone methide by simply rotating the initially oxidized, exocyclic methyl group into the molecule's plane. This initial zwitterionic intermediate and the quinone methide are not resonance structures but individual species, whose distinct electronic structures are separated by a mere 90° bond rotation. In this work, we hindered this crucial rotation, by substituting the affected methyl group with alkyl or phenyl groups. The alkyl groups slowed down the conversion to the quinone methide by 18-times, while the phenyl substituents, which additionally stabilize the zwitterion electronically, completely halted the conversion to the quinone methide at −78 °C, allowing for the first time the direct observation of a tocopherol-derived zwitterion. Employing a 13C-labeled model, the individual steps of the oxidation sequence could be observed directly by NMR, and the activation energy for the rotation could be estimated to be approximately 2.8 kcal/mol. Reaction rates were solvent dependent, with polar solvents exerting a stabilizing effect on the zwitterion. The observed effects confirmed the central relevance of the rotation step in the change from the aromatic to the quinoid state and allowed a more detailed examination of the oxidation behavior of tocopherol. The concept that a simple bond rotation can be used to switch between an aromatic and an anti-aromatic structure could find its use in molecular switches or molecular engines, driven by the specific absorption of external energy.  相似文献   
132.
A meso‐aryl and β‐alkyl substituted sapphyrin and its rhodium(I) and silver complexes were synthesized. This sapphyrin was so stable that the non‐inverted and warped structure could be analyzed by X‐ray crystallography even in its neutral state. Its bis‐rhodium(I) complex has a more planar structure than the sapphyrin with enhanced aromaticity over the conjugation circuit. On the other hand, silver metalation of the sapphyrin caused a marked core rearrangement into a neo‐confused sapphyrin derivative with a C(α)?N bond and a twisted macrocycle.  相似文献   
133.
The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl‐shaped C6v B36 cluster the global minimum.  相似文献   
134.
Trifluoroacetic acid‐catalyzed condensation of pyrrole with electron‐deficient and sterically hindered 3,5‐bis(trifluoromethyl)benzaldehyde results in the unexpected production of a series of meso‐3,5‐bis(trifluoromethyl)phenyl‐substituted expanded porphyrins including [22]sapphyrin 2 , N‐fused [22]pentaphyrin 3 , [26]hexaphyrin 4 , and intact [32]heptaphyrin 5 together with the conventional 5,10,15,20‐tetrakis(3,5‐bis(trifluoromethyl)phenyl)porphyrin 1 . These expanded porphyrins are characterized by mass spectrometry, 1H NMR spectroscopy, UV/Vis/NIR absorption spectroscopy, and fluorescence spectroscopy. The optical and electrochemical measurements reveal a decrease in the HOMO–LUMO gap with increasing size of the conjugated macrocycles, and in accordance with the trend, the deactivation of the excited singlet state to the ground state is enhanced.  相似文献   
135.
Typical polyacenequinododimethides exist only in a single classical structure. These hydrocarbons are moderately aromatic and diatropic, although they have no aromatic conjugated circuits. This apparent dichotomy was resolved with our graph theory of aromaticity and magnetotropicity. Many nonconjugated circuits were found to contribute collectively to aromaticity and diatropicity. For individual molecules, local aromaticity increases with distance from the exo‐methylene groups. This fact indicates that the conjugated‐circuit model is not always applicable to semibenzenoid hydrocarbons such as polyacenequinododimethides.  相似文献   
136.
137.
138.
The spatial magnetic properties (Through Space NMR Shieldings – TSNMRS) of two cyclobutadiene derivatives (2 and 5) and of a number of cyclobutadiene dianion derivatives (3, 4 and 6–8) have been calculated by the GIAO perturbation method employing the Nucleus-Independent Chemical Shift (NICS) concept of P. v. Ragué Schleyer, and visualized as Iso-Chemical-Shielding Surfaces (ICSS) of various size and direction. TSNMRS values can be successfully employed to quantify and visualize the (anti)aromaticity of the compounds studied and to discuss the influence of Li+ complexation to cyclobutadiene dianion (4a, 7 and 8) on planar 4c,6e or three-dimensional 6c,6e aromaticity.  相似文献   
139.
芳环超分子体系中的π-π作用   总被引:5,自引:0,他引:5  
王宇宙  吴安心 《有机化学》2008,28(6):997-1011
π-π作用是芳环超分子体系中广泛存在的一种重要的弱相互作用. 本文对π-π作用的特征、形式、有效参数和表征方法等作了比较全面的综述, 同时小结了影响π-π作用的一些重要因素, 最后还概述了近年来π-π作用在超分子组装、不对称催化、有机半导体材料等领域的研究进展.  相似文献   
140.
The equilibrium geometries, energies, harmonic vibrational frequencies, and nuc- leus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n = 0, 1 or 2) are investigated at the B3LYP level.All the [As4MAs4]n- species adopt staggered (D4d) conformations as their stable structures and eclipsed (D4h) conformations as their transition states, and once the sandwich complexes are formed, the As42- square properties remain unchanged.The NICS calculation confirms that the complexes of Fe, Co, and Ni are aromatic with negative NICS values, and those of Ru, Rh, and Ir exhibit slight aromaticity, while those of Pd, Os, and Pt show slight antiaromaticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号