首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   8篇
力学   62篇
数学   3篇
物理学   21篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
排序方式: 共有86条查询结果,搜索用时 0 毫秒
81.
Absorbing boundary conditions for computational aeroacoustics (CAA) are reviewed. Commonly used absorbing zonal techniques, such as sponge layers and buffer zones, as well as perfectly matched layers (PML) are discussed. The basic ideas and central results of these methods are surveyed and summarized. Special attention will be given to the recently emerged PML technique and its application to CAA. Numerical examples are presented for PML in duct acoustics. A comparison of PML and non-PML absorbing boundary conditions will also be given.  相似文献   
82.
The objective of this paper is to present an overview of recent advances in computational aeroacoustics (CAA). During the last decade, CAA has developed quite independent of computational fluid dynamics (CFD). There are computational issues that are unique to CAA and are, generally, not considered in CFD. In this paper, these issues are discussed and explained. In CAA, there is a great need to resolve high-frequency short waves with the minimum number of mesh points per wavelength. There is also a special need to minimize numerical dispersion and dissipation associated with wave propagation computation. All these have led to the development of large-stencil high-resolution schemes for CAA. A careful examination of dispersion and dissipation errors due to spatial and temporal discretization is provided. These errors are quantified and analyzed in wave number space through the use of Fourier-Laplace transforms. At this time, some of the original computational challenges to CAA have been resolved satisfactorily. A discussion of how some of these computational issues are resolved is presented. Several important CAA applications with interesting or unusual computational innovations are highlighted. Finally, a few of the most pressing outstanding computational challenges to CAA are elaborated.  相似文献   
83.
The method of characteristics is used to implement the various boundary conditions (e.g. wall and interface) in a high-order computational aeroacoustic (CAA) code developed by the first author. Most characteristic methods do not satisfy Pfaff's condition (which needs to be satisfied for any mathematical relation to be valid). A mathematically consistent and valid method is used in this work to derive the characteristic boundary conditions. Also, a robust and efficient approach for the matching of turbulence quantities at multi-block interfaces is proposed. Various numerical simulation cases were run to validate the concepts. The computed results show that the proposed method is accurate, robust and is in excellent agreement with experimental data. The results also indicate that the matching of turbulence quantities is essential for accurate turbulent flow calculations.  相似文献   
84.
Aeroacoustic scattering prediction generally relies on boundary integral methods which require evaluation of the impermeability condition on the scattering surface. The boundary condition implies zero normal velocity relative to the scattering surface. This condition has been expressed by relating the acoustic velocity to the acoustic pressure gradient, allowing indirect evaluation of the boundary condition by existent acoustic pressure gradient formulations. In the present paper, a direct evaluation of the hardwall boundary condition in scattering problems is demonstrated by time-domain analytic acoustic velocity formulae. Acoustic velocity formulations V1A and KV1A are implemented for acoustic scattering prediction, by hybrid approaches based on the FW–H equation and the Kirchhoff method These formulations can be coupled to any scattering solver, allowing time-domain prediction of the incident acoustic field when broadband noise generation is concerned. Formulation V1A offers mathematical simplicity and computational efficiency, which can be advantageous for realistic scattering applications. Implementation of formula KV1A enables acoustic scattering prediction by existing solvers based on the Kirchhoff method. The validity of the suggested methodology is assessed through the analytical test case of harmonic sound scattered by a rigid sphere. Sound propagation and scattering effects are analyzed by examination of the acoustic velocity field characteristics.  相似文献   
85.
I.IntroductionAcousticshockwavcs(ASW)isanimportantphcnomcnoninnonlinearacoustics.Experimentalrcsultshavcshownthatwhenanaircraftcngincinletopcratesneartheson-iccondition,vcrystrongnoisegcncratedbythcfanscanbcreduccdgreat1yowingtothcformationofASWatthcthroatofthcin1etll].ASWisadiscontinuityofacousticvaria-bles,whichisdifTcrcntfromthcshockwavesoccurringinhighspcedsteadyflowinducts.Theformer'sintensityismuch1cssthanthelattcr's.Furthcrmorc,thepositionandintensityofASWisalwayschangedwithtime.l…  相似文献   
86.
居鸿宾  沈孟育 《计算物理》1998,15(6):742-747
对差分格式进行优化处理可以提高其谱精度。与高精度(指Taylor展开精度)格式相比,优化格式放大因子的误差随波数的变化不是单调的,而是必然会出现极值点,这样就存在临界距离Rcr,在此距离内优化格式描述的数值波的积累误差小于高精度格式,而超出此距离后优化格式的误差反而大,对于非定常流及气动声学计算来说,控制差分格式的临界距离是必要的。一般的优化目标函数以每个时间推进步的误差为基础(即放大因子法),Rcr不能在优化过程中确定。对此进行分析,指出积累误差的重要性并提出以此为基础的新的优化目标函数,这样在对格式进行优化时可以直接指定临界距离,从而为控制谱精度提供方便。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号