首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   8篇
力学   62篇
数学   3篇
物理学   21篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
41.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
42.
Experimental investigations have been carried out on chevron nozzles to assess the importance of chevron parameters such as the number of chevrons (chevron count) and chevron penetration. Acoustic measurements such as overall sound pressure level, spectra, directivity, acoustic power, and broadband shock noise have been made over a range of nozzle pressure ratio from sub-critical to underexpansion levels. Shadowgraph images of the shock-cell structure of jets from various chevron nozzles have also been captured for different nozzle pressure ratios. The results indicate that a higher chevron count with a lower level of penetration yields the maximum noise suppression for low and medium nozzle pressure ratios. Of all the geometries studied, chevron nozzle with eight lobes and 0° penetration angle gives the maximum noise reduction. Chevron nozzles are found to be free from screech unlike regular nozzles. Acoustic power index has been calculated to quantitatively evaluate the performance of the various chevron nozzles. Chevron count is the pertinent parameter for noise reduction at low nozzle pressure ratios, whereas at high nozzle pressure ratios, chevron penetration is crucial. The results illustrate that by careful selection of chevron parameters substantial noise reduction can be achieved.  相似文献   
43.
This paper presents an aeroacoustic hybrid technique for the study of non‐isothermal flows at low Mach number. The flow dynamics and the acoustic production and propagation are computed separately. The fully compressible Navier–Stokes equations are modified through an expansion of the physical quantities using a low Mach number approximation. Compressibility effects are thus removed in the CFD while inhomogeneities of the flow related to heat transfer are preserved. One advantage is a reduction of the time step constraint. Another advantage is that the Mach number does not appear explicitly and a simple rescaling allows a study over a relatively wide band of subsonic Mach number flows with a single dynamic simulation. Compatible acoustic source terms for LEE based propagation have been defined and the procedure is implemented in the case of a temporal mixing layer. Compressible simulations for Mach numbers of 0.2, 0.3 and 0.4 are compared with the numerical results obtained using the proposed method. Very good agreement is obtained even at relatively high subsonic Mach number demonstrating the efficiency of the proposed technique. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
44.
We develop a class of fifth‐order methods to solve linear acoustics and/or aeroacoustics. Based on local Hermite polynomials, we investigate three competing strategies for solving hyperbolic linear problems with a fifth‐order accuracy. A one‐dimensional (1D) analysis in the Fourier series makes it possible to classify these possibilities. Then, numerical computations based on the 1D scalar advection equation support two possibilities in order to update the discrete variable and its first and second derivatives: the first one uses a procedure similar to that of Cauchy–Kovaleskaya (the ‘Δ‐P5 scheme’); the second one relies on a semi‐discrete form and evolves in time the discrete unknowns by using a five‐stage Runge–Kutta method (the ‘RGK‐P5 scheme’). Although the RGK‐P5 scheme shares the same local spatial interpolator with the Δ‐P5 scheme, it is algebraically simpler. However, it is shown numerically that its loss of compactness reduces its domain of stability. Both schemes are then extended to bi‐dimensional acoustics and aeroacoustics. Following the methodology validated in (J. Comput. Phys. 2005; 210 :133–170; J. Comput. Phys. 2006; 217 :530–562), we build an algorithm in three stages in order to optimize the procedure of discretization. In the ‘reconstruction stage’, we define a fifth‐order local spatial interpolator based on an upwind stencil. In the ‘decomposition stage’, we decompose the time derivatives into simple wave contributions. In the ‘evolution stage’, we use these fluctuations to update either by a Cauchy–Kovaleskaya procedure or by a five‐stage Runge–Kutta algorithm, the discrete variable and its derivatives. In this way, depending on the configuration of the ‘evolution stage’, two fifth‐order upwind Hermitian schemes are constructed. The effectiveness and the exactitude of both schemes are checked by their applications to several 2D problems in acoustics and aeroacoustics. In this aim, we compare the computational cost and the computation memory requirement for each solution. The RGK‐P5 appears as the best compromise between simplicity and accuracy, while the Δ‐P5 scheme is more accurate and less CPU time consuming, despite a greater algebraic complexity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
45.
Aircraft noise and its nearfield propagation computations   总被引:1,自引:0,他引:1  
  相似文献   
46.
The present paper addresses the optimization of finite‐difference schemes when these are to be used for numerically approximating spatial derivatives in aeroacoustics evolution problems. With that view in mind, finite‐difference operators are firstly detailed from a theoretical point of view. Secondly, time, the way such operators can be optimized in a spectral‐like sense is recalled, before the main limitations of such an optimization are highlighted. This leads us to propose an alternative optimization approach of innovative character. Such a novel optimization technique consists of enhancing the scheme's formal accuracy through a minimization of its leading‐order truncation error. This so‐called intrinsic optimization procedure is first detailed, before it is thoroughly analyzed, from both a theoretical and a practical point of view. The second part of the paper focuses on two particular intrinsically optimized schemes, which are carefully assessed via a direct comparison against their standard and/or spectral‐like optimized counterparts, such a comparative exercise being conducted utilizing several academic test cases of increasing complexity. There, it is shown how intrinsically optimized schemes indeed constitute an advantageous alternative to either the standard or the spectral‐like optimized ones, being allotted with both (i) the better scalability of the former scheme with respect to grid convergence effects when the grid density increases and (ii) the higher accuracy of the latter scheme when the discretization level becomes marginal. Thanks to that, such intrinsically optimized schemes offer very good trade‐offs in terms of (i) accuracy; (ii) robustness; and (iii) numerical efficiency (CPU cost). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
47.
48.
Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.  相似文献   
49.
陈荣钱  伍贻兆  夏健 《计算物理》2013,30(1):98-104
采用随机模型方法,对简化汽车头部外形进行风噪声数值模拟.将计算区域分为声源区域和传播区域,在声源区域采用随机模型构造湍流脉动速度场,传播区域通过求解带源项的线化欧拉方程实现声波向外传播得到声场解.同直接模拟方法相比,该方法具有计算量小、计算所需内存少等优点.数值模拟结果与实验数据吻合较好,验证了该方法预测汽车风噪声的可行性,为研究实际汽车外形的风噪声问题打下基础.  相似文献   
50.
We analyze optimized explicit Runge–Kutta schemes (RK) for computational aeroacoustics, and wave propagation phenomena in general. Exploiting the analysis developed in [S. Pirozzoli, Performance analysis and optimization of finite-difference schemes for wave propagation problems, J. Comput. Phys. 222 (2007) 809–831], we rigorously evaluate the performance of several time integration schemes in terms of appropriate error and cost metrics, and provide a general strategy to design Runge–Kutta methods tailored for specific applications. We present families of optimized second- and third-order Runge–Kutta schemes with up to seven stages, and describe their implementation in the framework of Williamson’s 2N2N-storage formulation [J.H. Williamson, Low-storage Runge–Kutta schemes, J. Comput. Phys. 35 (1980) 48–56]. Numerical simulations of the 1D linear advection equation and of the 2D linearized Euler equations are performed to demonstrate the validity of the theory and to quantify the improvement provided by optimized schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号