首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   81篇
  国内免费   19篇
化学   176篇
力学   41篇
综合类   1篇
数学   56篇
物理学   287篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   15篇
  2019年   19篇
  2018年   8篇
  2017年   16篇
  2016年   12篇
  2015年   18篇
  2014年   18篇
  2013年   32篇
  2012年   18篇
  2011年   28篇
  2010年   18篇
  2009年   35篇
  2008年   25篇
  2007年   34篇
  2006年   25篇
  2005年   31篇
  2004年   24篇
  2003年   24篇
  2002年   18篇
  2001年   10篇
  2000年   13篇
  1999年   8篇
  1998年   11篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   1篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
41.
Laser-based imaging of fuel vapor distribution, ignition, and soot formation in diesel sprays was carried out in a high-pressure, high-temperature spray chamber under conditions that correspond to temperature and pressure in a diesel engine. Rayleigh scattering and laser-induced incandescence are used to image fuel density and soot volume fraction. The experimental results provide data for comparison with numerical simulations. An interactive cross-sectionally averaged spray model based on Eulerian transport equations was used for the simulation of the spray, and the turbulence-chemistry interaction was modeled with the representative interactive flamelet (RIF) concept. The flamelet calculation is coupled to the Kiva3V computational fluid dynamics (CFD) code using the scalar dissipation rate and pressure as an input to the RIF-code. The flamelet code computes the instationary flamelet profiles for every time step. These profiles were integrated over mixture fraction space using a prescribed β-PDF to obtain mean values, which are passed back to the CFD-code. Thereby, the temperature and the relevant species in each CFD-cell were obtained. The fuel distribution, the average ignition delay as well as the location of ignition are well predicted by the simulation. Furthermore, simulations show that the experimentally observed injection-to-injection variations in ignition delay are due to temperature inhomogeneities. Experimental and simulated spatial soot and fuel vapor density distributions are compared during and after second stage ignition.  相似文献   
42.
The Stark widths (W) and shifts (d) of two neutral (520.908 and 546.550 nm), eleven singly (211.382, 224.643, 224.874, 232.029, 232.468, 233.140, 241.141, 241.323, 243.781, 244.793 and 276.754 nm) and three doubly (216.189, 231.004 and 239.569 nm) ionized silver (Ag I, Ag II and Ag III, respectively) spectral lines have been measured in nitrogen plasma at about 18,000 K electron temperature and electron density ranged between 0.65 × 1023 and 1.15 × 1023 m− 3. They are the first measured W and d values while those of the Ag II and Ag III lines are the first published data in these spectra. The modified version of the linear, low-pressure, pulsed arc was used as a plasma source operated in nitrogen with silver atoms, as impurities, evaporated from silver cylindrical plates located in the homogeneous part of the discharge. No theoretical predictions exist for W and d values of above mentioned spectral lines. Besides, we have checked the transition probability ratio of two investigated Ag I lines. An agreement with theoretical predictions was found.  相似文献   
43.
Although microRNAs (miRNAs) have been shown to be excellent indicators of disease state, current profiling platforms are insufficient for clinical translation. Here, we demonstrate a versatile hydrogel‐based microfluidic approach and novel amplification scheme for entirely on‐chip, sensitive, and highly specific miRNA detection without the risk of sequence bias. A simulation‐driven approach is used to engineer the hydrogel geometry and the gel‐reaction environment is chemically optimized for robust detection performance. The assay provides 22.6 fM sensitivity over a three log range, demonstrates multiplexing across at least four targets, and requires just 10.3 ng of total RNA input in a 2 hour and 15 minutes assay.  相似文献   
44.
Coatings based on dendritic polyglycerol (dPG) were investigated for their use to control nonspecific protein adsorption in an assay targeted to analyze concentrations of a specific protein. We demonstrate that coating of the sample vial with dPG can significantly increase the recovery of an antibody after incubation. First, we determine the concentration dependent loss of an antibody due to nonspecific adsorption to glass via quartz crystal microbalance (QCM). Complementary to the QCM measurements, we applied the same antibody as analyte in an surface plasmon resonance (SPR) assay to determine the loss of analyte due to nonspecific adsorption to the sample vial. For this purpose, we used two different coatings based on dPG. For the first coating, which served as a matrix for the SPR sensor, carboxyl groups were incorporated into dPG as well as a dithiolane moiety enabling covalent immobilization to the gold sensor surface. This SPR-matrix exhibited excellent protein resistant properties and allowed the immobilization of amyloid peptides via amide bond formation. The second coating which was intended to prevent nonspecific adsorption to glass vials comprised a silyl moiety that allowed covalent grafting to glass. For demonstrating the impact of the vial coating on the accuracy of an SPR assay, we immobilized amyloid beta (Aβ) 1-40 and used an anti-Aβ 1-40 antibody as analyte. Alternate injection of analyte into the flow cell of the SPR device from uncoated and coated vials, respectively gave us the relative signal loss (1 − RUuncoated/RUcoated) caused by the nonspecific adsorption. We found that the relative signal loss increases with decreasing analyte concentration. The SPR data correlate well with concentration dependent non-specific adsorption experiments of the analyte to glass surfaces performed with QCM. Our measurements show that rendering both the sample vial and the sensor surface is crucial for accurate results in protein assays.  相似文献   
45.
Reflection of Pulse Waves and Resonance Characteristics of Arterial Beds   总被引:1,自引:0,他引:1  
The problem of axisymmetric wave flow of a viscous incompressible fluid in a system consisting of a long thin deformable tube and a terminal element that determines the conditions of wave reflection at the tube end is analyzed. An expression for the input admittance of the system is obtained and the dependence of the admittance on the system parameters is investigated. The resonant frequencies at which the admittance amplitude has extrema are found and it is shown that at these frequencies the admittance variations with variation of the terminal-element parameters are maximal. The dependence of the resonant frequency on the tube length is investigated. Possible applications of the results obtained to the hydromechanical interpretation of a novel method of pulse diagnostics are discussed.  相似文献   
46.
王喜世 《实验力学》2007,22(3):435-439
微通道内气液两相流中气柱(plugbubble)与通道壁之间液膜厚度的实验测量,是微热管、微流动、微电子冷却以及气泡雾化等研究中普遍关注的问题。本文利用基于光学干涉和快速傅立叶变换的空间频谱分析方法,实验测量获取了含表面活性剂水中气柱在750μm通道内运动时其与通道壁面之间的液膜厚度。实验结果表明:表面活性剂对液膜厚度的影响比较明显,即当表面活性剂浓度在一定范围内增大时,液膜厚度会减小;此外,当气柱运动速度在一定范围内增大时,液膜厚度也会减小。  相似文献   
47.
This study reports on experimental investigations on isothermal and reacting swirled non-premixed flows under varying pressure conditions. In this configuration, a central high speed fuel jet was surrounded by a heated swirling air flow. For the reacting case natural gas served as fuel whereas for isothermal conditions fuel was replaced by a mixture of helium and air to achieve Reynolds-similarity. The optically accessible combustor allowed for application of laser diagnostics. Here we report on Laser Doppler Anemometry and planar laser-induced fluorescence (PLIF) experiments used to characterize the flow field and visualize selected scalars, respectively. Acetone served as a fluorescence marker for mixture fraction investigations. The hydroxyl radical was used to provide general features of the reaction zone such as flame shape and mean stabilization. To expose the influence of pressure on the flame structure three different operating points were investigated varying the combustor pressure between 2 and 6 bar while the inflow bulk velocities remained the same. Striking features of the present configuration are a detached flame, multiple recirculation zones, and complex coherent flow structures.  相似文献   
48.
A low power Hall Effect Thruster (HET), based on a permanent magnet circuit, was investigated in the GREMI laboratory facility. The thruster operated in the working range between 50 and 300 W and the previously measured thrust is between 4 and 16 mN for an anodic efficiency respectively between 15% and 27%. The pulsed character of the thruster current is an important feature of this HET. The ion current's bursts are recorded at 30 and 70 cm from the exit plane in the thruster plume and are time‐resolved, which lead to a preliminary analysis of the time of flight (TOF) phenomena. This paper presents a detailed study of these bursts of ion current in the plume. The total ion current is shown to be a superposition of 2 distinct contributions of charged species. In complement, a controlled single current interruption in stable anodic current condition leads to exactly the same features than in oscillating mode. This crucial verification garantees the validity of the time of flight origine of the two distinct contributions. Then, the slower one is the more intense and is proportional to the ion Xe+ current whereas the faster one could be attributed either to doubly‐charged Xe++ or to superfast Xe+. The work presents a way to determine unambiguously the nature of the fast contribution by recording the Retardated Potential Analyser (RPA) signals at various repelling grid potentials with respect to time. The energy distribution of the 2 wellseparated contributions are reconstructed and confirms the contribution of doubly‐charged xenon ions (Xe++) in the plume. This way of RPA collecting data and interpretation presents the main advantage tobe an easy way for the identification of the nature of the charged species in the plume. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
49.
Laser-induced breakdown spectroscopy of helium plasma, initially at room temperature and pressures ranging from 12 to 101 kPa was investigated using a transverse excitation atmospheric CO2 pulsed laser (λ = 9.621 and 10.591 μm, a full width at half maximum of 64 ns, and an intensity from 1.5 to 5.36 GW cm−2). The helium breakdown spectrum is mainly due to electronic relaxation of excited He, He+ and H. Plasma characteristics were examined in detail on the emission lines of He and He+ by the time-integrated and time-resolved optical emission spectroscopy technique. Optical breakdown threshold intensities, ionization degree and plasma temperatures were obtained. An auxiliary metal mesh target was used to analyze the temporal evolution of the species in the plasma. The results show a faster decay of the continuum emission and He+ species than in the case of neutral He atoms. The velocity and kinetic energy distributions for He and He+ species were obtained from time-of-flight measurements. Electron density in the laser-induced plasma was estimated from the analysis of spectral data at various times from the laser pulse incidence. Temporal evolution of electron density has been used for the estimation of the three-body electron-ion recombination rate constant.  相似文献   
50.
Aluminum nanoparticles are of significant interest in enhancing the rate of energy release from propellants. One of the major impediments to their use is that bare aluminum is highly reactive, while oxide coated aluminum significantly decreases overall performance. We investigate creating aluminum nanoparticles with a thin carbon coating using either a laser induced plasma or a DC plasma-arc. The carbon coating was created by injecting ethylene (C2H4) directly downstream of the plasma. The elemental composition of the coated aluminum nanoparticles was measured in real time with a recently developed quantitative single particle mass spectrometer (SPMS). We found that the aluminum nanoparticles were coated with a carbon layer of thickness around 1–3 nm.The thermal and oxidative stability of these particles was determined by passing the aerosols through a heated flow reactor in a carrier flow of either air or argon, and measuring the aluminum, carbon and oxygen content in the particles with the single particle mass spectrometer. We found that below 700°C the coating was stable, but that the coating oxidized above ∼ ∼800°C. In contrast the carbon coating was thermally stable above ∼ ∼900°C. These results indicate that a carbon coating may be a suitable passivating agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号