首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3276篇
  免费   725篇
  国内免费   182篇
化学   567篇
晶体学   36篇
力学   1542篇
综合类   40篇
数学   311篇
物理学   1687篇
  2024年   14篇
  2023年   46篇
  2022年   100篇
  2021年   101篇
  2020年   106篇
  2019年   110篇
  2018年   85篇
  2017年   132篇
  2016年   169篇
  2015年   128篇
  2014年   176篇
  2013年   277篇
  2012年   167篇
  2011年   181篇
  2010年   139篇
  2009年   154篇
  2008年   167篇
  2007年   180篇
  2006年   180篇
  2005年   159篇
  2004年   168篇
  2003年   148篇
  2002年   121篇
  2001年   109篇
  2000年   106篇
  1999年   90篇
  1998年   77篇
  1997年   71篇
  1996年   86篇
  1995年   62篇
  1994年   60篇
  1993年   47篇
  1992年   36篇
  1991年   38篇
  1990年   25篇
  1989年   21篇
  1988年   9篇
  1987年   17篇
  1986年   21篇
  1985年   20篇
  1984年   13篇
  1983年   11篇
  1982年   26篇
  1981年   6篇
  1980年   6篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1971年   5篇
  1957年   2篇
排序方式: 共有4183条查询结果,搜索用时 31 毫秒
71.
The viscosity deviation (Δη), the excess molar volume (V E) and the ultrasonic speed (u) have been investigated from viscosity (η) and density (ρ ) measurements of binary liquid mixtures of 1,2-dimethyoxyethane with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol or octan-1-ol over the entire range of composition at 298.15 K. The excess volumes are negative over the entire range of composition for all of the mixtures with the exception of hexan-1-ol and octan-1-ol. The excess isentropic compressibilities (K S E) and viscosity deviations are negative for all of the mixtures. The magnitudes of the negative values of V E decrease with the number of carbon atoms of the alkan-1-ol. The trend of increasing K S E values with the chain length of the alkanol is similar to that observed in the case of V E. Graphs of V E, Δ η, K S E, Δ u, L f E and Z E against composition are presented as a basis for a qualitative discussion of the results.  相似文献   
72.
The effect of interparticle forces on shear thinning in concentrated aqueous and nonaqueous colloidal suspensions was studied using nonequilibrium Brownian dynamics. Hydrodynamic interactions among particles were neglected. Systems of 108 particles were studied at volume fractions of 0.2 and 0.4. For the nonaqueous systems, shear thinning could be correlated with the gradual breakup of small flocs present because of the weak, attractive secondary minimum in the interparticle potential. At the highest shear rate for=0.4, the particles were organized into a hexagonally packed array of strings. For the strongly repulsive aqueous systems, the viscosity appeared to be a discontinuous function of the shear rate. For=0.4, this discontinuity coincided with a transition from a disordered state to a lamellar structure for the suspension.  相似文献   
73.
The linear 3D piezoelasticity theory in conjunction with the versatile transfer matrix approach and the wave equation for the internal acoustic domain are employed for active non-stationary vibroacoustic response control of an arbitrarily thick, tri-laminate, fluid-filled, simply supported, piezocomposite cylindrical tank, excited by arbitrary (non-axisymmetric) time-dependent on-surface mechanical loads. The smart structure is composed of a supporting core layer of functionally graded orthotropic material perfectly bonded to inner and outer spatially distributed radially polarized functionally graded piezoceramic sensor and uniform force actuator (FGPM) layers. Active vibration damping is implemented by transferring the accumulated voltage on the sensor layer to the piezoelectric actuator layer in context of proportional and derivative control laws. Durbin's numerical inverse Laplace transform scheme is utilized to calculate the time response histories of the relevant interface displacement/stress components, center-point acoustic pressure, and actuator voltage, for selected loading configurations (i.e., concentrated step, impulse, and moving external loads). Numerical simulations demonstrate the effectiveness of the adopted distributed sensing/actuation configuration together with the active damping control strategy in suppressing the vibroacoustic response of a three-layered (Ba2NaNb5O15/Al/PZT4) water-filled piezoelastic cylindrical tank. Limiting cases are considered and the validity of results is established by comparison with the available data as well as with the aid of a commercial finite element package.  相似文献   
74.
The propagation of rough and smooth wall pre-existing turbulent fluid fractures is investigated. The laminar fluid fracture is included as a special case for comparison. Lubrication theory is assumed to apply in the fracture and turbulence is introduced through the wall shear stress. The Perkins–Kern–Nordgren approximation is made in which the fluid pressure is proportional to the half-width of the fracture. The fracture half-width satisfies a non-linear diffusion equation. By using a linear combination of the Lie point symmetries of the non-linear diffusion equation a group invariant solution for the fracture length, volume and half-width is derived. The evolution of the length, half-width and mean flow velocity is analysed for a range of working conditions at the fracture entry. It is found that the mean flow velocity increases approximately linearly along the fracture.  相似文献   
75.
This work extends our previous understanding concerning the nonlinear responses of entangled polymer solutions and melts to large external deformation in both simple shear and uniaxial extension. Many similarities have recently been identified for both step strain and startup continuous deformation, including elastic yielding, i.e., chain disentanglement after cessation of shear or extension, and emergence of a yield point during startup deformation that involves a deformation rate in excess of the dominant molecular relaxation rate. At a sufficiently high constant Hencky rate, uniaxial extension of an entangled melt is known to produce window-glass-like rupture. The present study provides evidence against the speculation that chain entanglements tie up into "dead knots" in constant-rate extension because of the exponentially growing chain stretching with time. In particular, it is shown that even Instron-style tensile stretching, i.e., extending a specimen by applying a constant velocity on both ends, results in rupture. Yet, in the same rate range, the same entangled melt only yields in simple shear, and the resulting shear banding is clearly not a characteristic of rupture. Thus, we conclude that chain entanglements respond to simple shear in the manner of yielding whereas uniaxial extension is rather effective in causing some entanglements to lock up, making it impossible for the entanglement network to yield at high rates.  相似文献   
76.
Crosslinked fluorinated polyimides (CFPI) were successfully synthesized to study and explore the effect of cross-linkage on the migration of fluorinated segments and on the adhesion strength. Characterization by dynamic thermomechanical analysis (DMA) and thermo gravimetric analysis (TGA) confirmed good thermal properties of CFPI. X-ray photoelectron spectroscopy (XPS) results showed that the ratio of fluorinated component (6FDA-ODA) concentration of the surface to the bulk decreased with the crosslink density. The water contact angle of CFPI was lower than that of non-crosslinked fluorinated polyimide, indicating that the migration of fluorinated groups to the surface was reduced by the presence of cross-linkage. Therefore, CFPI, with no fluorine segregation on the surface, exhibited excellent wetting of adherent surfaces and adhesion strength, which was proved by lap shear strength (LSS) measurements and scanning electron microscopy.  相似文献   
77.
A hybrid particle–continuum method is used to study the shear flow confined between two opposing walls, one of which is coated with polymer chains. Molecular dynamics (MD) is used in the particle region near the brush and Navier–Stokes (NS) equations are applied in the remaining region where the continuum assumption holds. The information exchange from the continuum region to the particle region is implemented using the constrained particle dynamics. Both Couette shear flow and oscillatory flow are considered in the present work. The effect of the shear flow on the conformational characteristics of polymer brushes is analyzed. In the overlap region, the velocities obtained from MD simulations are smoothly connected with those from NS equations. Our investigations demonstrate that the hybrid particle–continuum model is valid in exploring the shear behavior of polymer brushes.  相似文献   
78.
79.
A new finite element method is developed to simulate time‐dependent viscoelastic shear‐thinning flows characterized by the generalized Oldroyd‐B model. The focus of the algorithm is improved stability through a free‐energy dissipative scheme by using low‐order piecewise‐constant finite element approximations for stress. The algorithm is further modified by incorporating a pressure‐projection method, a DG‐upwinding scheme, a symmetric interior penalty DG method to solve the elliptic pressure‐update equation and a geometric multigrid preconditioner. The improved stability and cost to accuracy is compared when using higher order discontinuous bilinear approximation, where in addition, we consider the influence of a slope limiter for these elements. The algorithm is applied to the 2D start‐up‐driven cavity problem, and the stability of the free energy is illustrated and compared between element choices. An application of the model to modelling blood in small arterioles and channels is considered by simulating pulsatile blood flow through a stenotic arteriole. The individual influences of viscoelasticity and shear‐thinning within the generalized Oldroyd‐B model are investigated by comparing results to the Newtonian, generalized Newtonian and Oldroyd‐B models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号