首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2046篇
  免费   161篇
  国内免费   118篇
化学   904篇
晶体学   2篇
力学   297篇
综合类   37篇
数学   584篇
物理学   501篇
  2024年   5篇
  2023年   19篇
  2022年   32篇
  2021年   45篇
  2020年   57篇
  2019年   46篇
  2018年   53篇
  2017年   72篇
  2016年   81篇
  2015年   77篇
  2014年   88篇
  2013年   126篇
  2012年   108篇
  2011年   133篇
  2010年   84篇
  2009年   103篇
  2008年   122篇
  2007年   136篇
  2006年   121篇
  2005年   105篇
  2004年   124篇
  2003年   85篇
  2002年   71篇
  2001年   55篇
  2000年   63篇
  1999年   50篇
  1998年   47篇
  1997年   43篇
  1996年   38篇
  1995年   21篇
  1994年   16篇
  1993年   23篇
  1992年   18篇
  1991年   17篇
  1990年   9篇
  1989年   10篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1970年   1篇
排序方式: 共有2325条查询结果,搜索用时 156 毫秒
51.
B‐doped Si multiple delta‐layers (MDL) were developed as certified reference materials (CRM) for secondary ion mass spectrometry (SIMS) depth profiling analysis. Two CRMs with different delta‐layer spacing were grown by ion beam sputter deposition (IBSD). The nominal spacing of the MDL for shallow junction analysis is 10 nm and that for high energy SIMS is 50 nm. The total thickness of the film was certified by high resolution transmission electron microscopy (HR‐TEM). The B‐doped Si MDLs can be used to evaluate SIMS depth resolution and to calibrate the depth scale. A consistency check of the calibration of stylus profilometers for measurement of sputter depth is another possible application. The crater depths measured by a stylus profilometer showed a good linear relationship with the thickness measured from SIMS profiling using the calibrated film thickness for depth scale calibration. The sputtering rate of the amorphous Si thin film grown by sputter deposition was found to be the same as that of the crystalline Si substrate, which means that the sputtering rate measured with these CRMs can be applied to a real analysis of crystalline Si. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
52.
A recently proposed perturbational approach to the electron correlation cusp problem 1 is tested in the context of three spherically symmetrical two‐electron systems: helium atom, hydride anion, and a solvable model system. The interelectronic interaction is partitioned into long‐ and short‐range components. The long‐range interaction, lacking the singularities responsible for the electron correlation cusp, is included in the reference Hamiltonian. Accelerated convergence of orbital‐based methods for this smooth reference Hamiltonian is shown by a detailed partial wave analysis. Contracted orbital basis sets constructed from atomic natural orbitals are shown to be significantly better for the new Hamiltonian than standard basis sets of the same size. The short‐range component becomes the perturbation. The low‐order perturbation equations are solved variationally using basis sets of correlated Gaussian geminals. Variational energies and low‐order perturbation wave functions for the model system are shown to be in excellent agreement with highly accurate numerical solutions for that system. Approximations of the reference wave functions, described by fewer basis functions, are tested for use in the perturbation equations and shown to provide significant computational advantages with tolerable loss of accuracy. Lower bounds for the radius of convergence of the resulting perturbation expansions are estimated. The proposed method is capable of achieving sub‐μHartree accuracy for all systems considered here. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   
53.
This work presents multi‐state multi‐reference Møller–Plesset second‐order perturbation theory as a variant of multi‐reference perturbation theory to treat electron correlation in molecules. An effective Hamiltonian is constructed from the first‐order wave operator to treat several strongly interacting electronic states simultaneously. The wave operator is obtained by solving the generalized Bloch equation within the first‐order interaction space using a multi‐partitioning of the Hamiltonian based on multi‐reference Møller–Plesset second‐order perturbation theory. The corresponding zeroth‐order Hamiltonians are nondiagonal. To reduce the computational effort that arises from the nondiagonal generalized Fock operator, a selection procedure is used that divides the configurations of the first‐order interaction space into two sets based on the strength of the interaction with the reference space. In the weaker interacting set, only the projected diagonal part of the zeroth‐order Hamiltonian is taken into account. The justification of the approach is demonstrated in two examples: the mixing of valence Rydberg states in ethylene, and the avoided crossing of neutral and ionic potential curves in LiF. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   
54.
Abstract

A sensitive method has been developed for the direct atomic absorption spectrometric determination of zinc, antimony and lead after coprecipitation of their trifluoroethylxanthates onto microcrystalline naphthalene. The metal xanthates are quantitatively coprecipitated over the pH ranges: Zn, 5.9–8.4; Sb, 4.0–6.0 and Pb, 4.0–11.0. The solid mass consisting of the metal complex and naphthalene is dissolved in DMF. This solution is aspirated into an air-acetylene flame at 213.9, 217.6 and 217.0nm for Zn, Sb and Pb, respectively. Beer's law is obeyed in the concentration range 2–50, 3–90 and 5–60 μg of Zn, Sb and Pb, respectively in 10ml of the final DMF solution. RSDs are at the ± (0.5–0.6)% level (n=10). The concentration for 1% absorption is 0.019, 0.035 and 0.060μg/ml for Zn, Sb and Pb, respectively. The method is suitable for the preconcentration of the metals from a larger volume of the aqueous phase, and has been employed for their determination in standard reference materials. It may be employed for the simultaneous determination of Zn, Pb and Sb in a solution by pH control.  相似文献   
55.
56.
Exponential family random graph models (ERGMs) can be understood in terms of a set of structural biases that act on an underlying reference distribution. This distribution determines many aspects of the behavior and interpretation of the ERGM families incorporating it. One important innovation in this area has been the development of an ERGM reference model that produces realistic behavior when generalized to sparse networks of varying sizes. Here, we show that this model can be derived from a latent dynamic process in which tie formation takes place within small local settings between which individuals move. This derivation provides one possible micro-process interpretation of the sparse ERGM reference model and sheds light on the conditions under which constant mean degree scaling can emerge.  相似文献   
57.
58.
Necessary conditions for the existence of a super‐simple, decomposable, near‐resolvable ‐balanced incomplete block design (BIBD) whose 2‐component subdesigns are both near‐resolvable ‐BIBDs are (mod ) and . In this paper, we show that these necessary conditions are sufficient. Using these designs, we also establish that the necessary conditions for the existence of a super‐simple near‐resolvable ‐RBIBD, namely (mod ) and , are sufficient. A few new pairwise balanced designs are also given.  相似文献   
59.
Low ceiling temperature, thermodynamically unstable polymers have been troublesome to synthesize and keep stable during storage. In this study, stable poly(phthalaldehyde) has been synthesized with BF3‐OEt2 catalyst. The role of BF3 in the polymerization is described. The interaction of BF3 with the monomer is described and used to maximize the yield and molecular weight of poly(phthalaldehyde). Various Lewis acids were used to investigate the effect of catalyst acidity on poly(phthalaldehyde) chain growth. In situ nuclear magnetic resonance was used to identify possible interactions formed between BF3 and phthalaldehyde monomer and polymer. The molecular weight of the polymer tracks with polymerization yield. The ambient temperature stability of poly(phthalaldehyde) was investigated and the storage life of the polymer has been improved. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1166–1172  相似文献   
60.
Alchemical free energy (AFE) calculations based on molecular dynamics (MD) simulations are key tools in both improving our understanding of a wide variety of biological processes and accelerating the design and optimization of therapeutics for numerous diseases. Computing power and theory have, however, long been insufficient to enable AFE calculations to be routinely applied in early stage drug discovery. One of the major difficulties in performing AFE calculations is the length of time required for calculations to converge to an ensemble average. CPU implementations of MD‐based free energy algorithms can effectively only reach tens of nanoseconds per day for systems on the order of 50,000 atoms, even running on massively parallel supercomputers. Therefore, converged free energy calculations on large numbers of potential lead compounds are often untenable, preventing researchers from gaining crucial insight into molecular recognition, potential druggability and other crucial areas of interest. Graphics Processing Units (GPUs) can help address this. We present here a seamless GPU implementation, within the PMEMD module of the AMBER molecular dynamics package, of thermodynamic integration (TI) capable of reaching speeds of >140 ns/day for a 44,907‐atom system, with accuracy equivalent to the existing CPU implementation in AMBER. The implementation described here is currently part of the AMBER 18 beta code and will be an integral part of the upcoming version 18 release of AMBER. © 2018 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号