首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   6篇
  国内免费   10篇
化学   49篇
物理学   8篇
  2024年   2篇
  2023年   8篇
  2022年   9篇
  2021年   10篇
  2020年   14篇
  2019年   6篇
  2018年   7篇
  2017年   1篇
排序方式: 共有57条查询结果,搜索用时 0 毫秒
41.
The direct electrochemical detection of cancer biomarkers using single single-component platforms is challenging. Herein, we propose constructing an efficient screen-printed electrode (SPE) based platform for selective detection of CD44 proteins, a non-kinase transmembrane glycoprotein. A sensing platform, MB-MX/HA/SPE, was developed by incorporating few-layered Ti3C2Tx nanosheets pre-loaded with methylene blue (MB) dye. The nanosheets were subsequently immobilized with hyaluronic acid (HA), which served as a ligand for the specific recognition of CD44. The simple electrode configuration and the highly conductive Ti3C2Tx facilitated the electrochemical oxidation of MB, generating a reference SWV signal that declined proportionally with the increasing concentration of CD44 owing to ligand (HA)-protein interaction. The sensor could register a sensitive inhibition response in the concentration range of 0.1 to 7.25 ng.mL−1 with a detection limit of 1.2×10−2 ng.mL−1 for CD44 proteins. Moreover, the synergistic combination of the highly conductive/adsorptive Ti3C2Tx nanosheets and hyaluronic acid (HA) led to strong antifouling characteristics even in the presence of other common proteins, such as bovine serum albumin (BSA), haemoglobin (Ig), immunoglobulin G (IgG), prostate-specific antigen (PSA), and neuron-specific enolase (NSE). The proposed strategy eliminates the need for additional components in the electrode modification procedure. In addition, incorporating MXenes as electrode material paves the way for developing sensitive biosensors with prospective applications in cancer diagnosis.  相似文献   
42.
Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85MA0.15Pb(I0.95Br0.05)3-based PSCs by incorporating Ti3C2Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb−Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 μs and an enlarged crystal size exceeding 2.5 μm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.  相似文献   
43.
There is widespread use of telecommunication and microwave technology in modern society, and raised the electromagnetic interference (EMI) issue to alarming situation due to apprehensive demand and growth of 5G technology undesirably disturbing the human health. The two dimensional (2D) materials including graphene and MXenes are already been used for variety of electronic devices due to their exceptional electrical, mechanical, optical, chemical, and thermal properties. MXene is composed of metal carbides, in which mainly metals are the building blocks for dielectrics, semiconductors, or semimetals. However, the strong interfaces with electromagnetic waves (EM) are variable from terahertz (THz) to gigahertz (GHz) frequency levels and are widely used in EMI and Microwave absorption (MA) for mobile networks and communication technologies. The use of different organic materials with metal, organic, inorganic fillers, polymers nanocomposite and MXene as a novel material has been studied to address the recent advancement and challenges in the microwave absorption mechanism of 2D materials and their nanocomposites. In this concern, various techniques and materials has been reported for the improvement of shielding effectiveness (SE), and theoretical aspects of EMI shielding performance, as well stability of 2D materials particularly MXene, graphene and its nanocomposites. Consequently, various materials including polymers, conducting polymers, and metal–organic frameworks (MOF) have also been discussed by introducing various strategies for improved MA and control of EMI shieling. Here in this comprehensive review, we summarized the recent developments on material synthesis and fabrication of MXene based nanocomposites for EMI shielding and MA. This research work is a comprehensive review majorly focuses on the fundamentals of EMI/MA.  The recent developments and challenges of the MXene and graphene based various structures with different polymeric composites are described in a broader perspective.  相似文献   
44.
The electrocatalysis of oxygen reduction reaction (ORR) is of paramount importance in energy-converting systems such as fuel cells and metal–air batteries. Unfortunately, the ORR kinetics is sluggish even at prohibitive platinum group metal catalysts. Two-dimensional materials have attracted increasing interest for energy production and storage in the last years, due to their exceptional chemical, physical, optical, and electronic properties. In this review, we briefly report the recent progress of two-dimensional catalysts for the ORR. Particularly, we approach to heteroatom-doped graphenic materials, dichalcogenides, and MXenes offering results that demonstrate outstanding properties of these materials for the construction of competitive ORR electrocatalysts without platinum group metals.  相似文献   
45.
MXenes, 2D compounds generated from layered bulk materials, have attracted significant attention in energy‐related fields. However, most syntheses involve HF, which is highly corrosive and harmful to lithium‐ion battery and supercapacitor performance. Here an alkali‐assisted hydrothermal method is used to prepare a MXene Ti3C2Tx (T=OH, O). This route is inspired from a Bayer process used in bauxite refining. The process is free of fluorine and yields multilayer Ti3C2Tx with ca. 92 wt % in purity (using 27.5 m NaOH, 270 °C). Without the F terminations, the resulting Ti3C2Tx film electrode (ca. 52 μm in thickness, ca. 1.63 g cm?3 in density) is 314 F g?1 via gravimetric capacitance at 2 mV s?1 in 1 m H2SO4. This surpasses (by ca. 214 %) that of the multilayer Ti3C2Tx prepared via HF treatments. This fluorine‐free method also provides an alkali‐etching strategy for exploring new MXenes for which the interlayer amphoteric/acidic atoms from the pristine MAX phase must be removed.  相似文献   
46.
Density functional theory calculations are performed to investigate electronic properties and Li/Na storage capability of Hf3C2 and its derivatives (uniform passivated: Hf3C2T2 [T = F, O, OH] and hybrid passivated: Hf3C2FxO2-x and Hf3C2Ox(OH)2-x [x = 1.0, 1.5]). For Hf3C2 monolayer, it has excellent performance, such as good conductivity, low diffusion energy barrier, low open circuit voltage, and high storage capacities (Li(1034.70 mAh g−1), Na(444.90 mAh g−1)), providing the most prospective as anode material. However, due to the unsaturated dangling bonds of surface Hf, so it is easily passivated. For the uniform passivated ones, Hf3C2T2, show higher diffusion barriers and lower storage capacities than bare monolayer Hf3C2. Nevertheless, compared with uniform passivated ones, the hybrid passivated derivative, Hf3C2F1.5O0.5 and Hf3C2OOH possess a lower energy barrier and a better storage capacity. Therefore, Hf3C2F1.5O0.5 and Hf3C2OOH are deemed to be a suitable candidate as anode electrode material for Li-ion batteries. © 2019 Wiley Periodicals, Inc.  相似文献   
47.
These days, explorations have focused on designing two-dimensional (2D) nanomaterials with useful (photo)catalytic and environmental applications. Among them, MXene-based composites have garnered great attention owing to their unique optical, mechanical, thermal, chemical, and electronic properties. Various MXene-based photocatalysts have been inventively constructed for a variety of photocatalytic applications ranging from pollutant degradation to hydrogen evolution. They can be applied as co-catalysts in combination with assorted common photocatalysts such as metal sulfide, metal oxides, metal–organic frameworks, graphene, and graphitic carbon nitride to enhance the function of photocatalytic removal of organic/pharmaceutical pollutants, nitrogen fixation, photocatalytic hydrogen evolution, and carbon dioxide conversion, among others. High electrical conductivity, robust photothermal effects, large surface area, hydrophilicity, and abundant surface functional groups of MXenes render them as attractive candidates for photocatalytic removal of pollutants as well as improvement of photocatalytic performance of semiconductor catalysts. Herein, the most recent developments in photocatalytic degradation of organic and pharmaceutical pollutants using MXene-based composites are deliberated, with a focus on important challenges and future perspectives; techniques for fabrication of these photocatalysts are also covered.  相似文献   
48.
《中国化学快报》2020,31(4):947-952
The development of two-dimensional hybrid nanomaterial derived from MXenes as high performance electrode material is the key component for the advanced ene rgy storage and conversion systems.In the past decades,MXene derived nanomaterials have attracted greatly interest in scientific activity and potential applications because of their unique synergistic properties such as high thermal stability,excellent electrical conductivity,large surface area,easy to handle and outstanding electro and photo chemical properties.This review is focused on the synthesis of hybrid nanomaterials from MXene(Ti_3C_2T_x) for renewable energy conversion and storage application including hydrogen evolution reaction,supercapacitor,lithium-ion batteries and photocatalysis.Finally,we also summarized the prospect and opportunities of novel two-dimensional hybrid nanomaterials derived MXene(Ti_3C_2T_x) fo r futuristic sustainable energy technology.  相似文献   
49.
《中国化学快报》2020,31(4):969-979
The geometrically multiplied development of 2D MXenes has already promoted the prosperity of various fields of scientific researches especially but not limited in energy storage and conversion.Notably,cation intercalation can improve the interlayer spacing of MXenes resulting in tunable physical and chemical properties.Moreover,the synchrotron radiation X-ray characterizations have also shown high potential on exploring the property and structu re of cation intercalated MXe nes.This review is mainly focused on the recent achievements of cation intercalated MXenes through different methods on energy storage systems.Synchrotron-based X-ray absorption spectroscopic characterizations are emphasized to probe the local coordination and electronic structure in intercalated MXenes.The outlook of cation intercalation on MXenes and their applications are also discus sed.  相似文献   
50.
Until now, MXenes could only be produced from MAX phases containing aluminum, such as Ti3AlC2. Here, we report on the synthesis of Ti3C2 (MXene) through selective etching of silicon from titanium silicon carbide—the most common MAX phase. Liters of colloidal solutions of delaminated Ti3SiC2‐derived MXene (0.5–1.3 mg mL?1) were produced and processed into flexible and electrically conductive films, which show higher oxidation resistance than MXene synthesized from Ti3AlC2. This new synthesis method greatly widens the range of precursors for MXene synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号