首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   10篇
  国内免费   37篇
化学   384篇
晶体学   22篇
力学   3篇
综合类   2篇
数学   2篇
物理学   273篇
  2024年   1篇
  2023年   45篇
  2022年   9篇
  2021年   10篇
  2020年   11篇
  2019年   12篇
  2018年   13篇
  2017年   13篇
  2016年   11篇
  2015年   12篇
  2014年   18篇
  2013年   38篇
  2012年   27篇
  2011年   43篇
  2010年   36篇
  2009年   47篇
  2008年   40篇
  2007年   43篇
  2006年   49篇
  2005年   19篇
  2004年   24篇
  2003年   21篇
  2002年   23篇
  2001年   13篇
  2000年   14篇
  1999年   13篇
  1998年   22篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   12篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有686条查询结果,搜索用时 46 毫秒
81.
In this work, the influence of Si/SiO2 interface properties, interface nitridation and remote-plasma-assisted oxidation (RPAO) thickness (<1 nm), on electrical performance and TDDB characteristics of sub-2 nm stacked oxide/nitride gate dielectrics has been investigated using a constant voltage stress (CVS). It is demonstrated that interfacial plasma nitridation improves the breakdown and electrical characteristics. In the case of PMOSFETs stressed in accumulation, interface nitridation suppresses the hole traps at the Si/SiO2 interface evidenced by less negative Vt shifts. Interface nitridation also retards hole tunneling between the gate and drain, resulting in reduced off-state drain leakage. In addition, the RPAO thickness of stacked gate dielectrics shows a profound effect in device performance and TDDB reliability. Also, it is demonstrated that TDDB characteristics are improved for both PMOS and NMOS devices with the 0.6 nm-RPAO layer using Weibull analysis. The maximum operating voltage is projected to be improved by 0.3 V difference for a 10-year lifetime. However, physical breakdown mechanism and effective defect radius during stress appear to be independent of RPAO thickness from the observation of the Weibull slopes. A correlation between trap generation and dielectric thickness changes based on the C-V distortion and oxide thinning model is presented to clarify the trapping behavior in the RPAO and bulk nitride layer during CVS stress.  相似文献   
82.
The Ba2In2 − x Sn x O5 + x/2 solid solution was confirmed up to x = 1 by solid-state reaction. X-ray diffraction at room and at elevated temperatures, Raman scattering and impedance spectroscopy were used to characterise the samples. The structure refinement of the composition x = 0.1 from neutron diffraction data reveals that tin is preferentially located in the tetrahedral layers of the brownmillerite. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007  相似文献   
83.
《Electroanalysis》2018,30(8):1659-1668
PAMAM dendrimer/reduced graphene oxide nanocomposite modified pencil graphite electrode (PAMAM/RGO/PGE) was used to fabricate an electrochemical DNA biosensor for determination of Rituxan (RTX) at low concentrations, for the first time. The fabricated biosensor was characterized with FE‐SEM, EIS, and CV techniques. The ds‐DNA/PAMAM/RGO/PGE was used as a working electrode to study the interaction between the RTX and salmon sperm ds‐DNA by DPV technique. Because of the interaction between the drug and DNA leads to a decrease in the guanine oxidation peak current, it was used as an indicator for the determination of the RTX. Under the optimized experimental conditions, a wide linear relationship between RTX concentration and guanine signal was obtained within the range of 7.0 to 60.0 μmol L−1 and 60.0 to 300.0 μmol L−1 with a low detection limit (0.56 μmol L−1). To clarify the interaction mechanism between the RTX and the ds‐DNA, DPV and UV‐Vis measurements were used. The reproducibility, stability, and performance of the constructed biosensor was examined by quantitative measuring RTX in pharmaceutical and human serum samples with good precision (RSD; 2.0–6.0 %) and acceptable recoveries (100.04–101.95 %).  相似文献   
84.
The mechanism of the oxidative [3+2] cycloaddition of alkenes with anhydrides using oxygen as an oxidant to synthesize γ-lactones has been studied using a heterogeneous dual copper-manganese–based catalyst. The cyclization takes place through two coexisting reaction mechanisms, the involvement of different reaction intermediates and a clear synergistic effect between copper and manganese. In fact it appears that CuO clusters dispersed on the surface of a manganese-based oxide increase the redox capability of manganese ions and leads to an increase in the release of oxygen from the surface.  相似文献   
85.
Multi-domained heteroepitaxial rutile-phase TiO2 (1 0 0)-oriented films were grown on Si (1 0 0) substrates by using a 30-nm-thick BaF2 (1 1 1) buffer layer at the TiO2–Si interface. The 50 nm TiO2 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a titanium source, and the growth temperature was varied from 300 to 600 °C. At an optimal temperature of 500 °C, X-ray diffraction measurements show that rutile phase TiO2 films are produced. Pole figure analysis indicates that the TiO2 layer follows the symmetry of the BaF2 surface mesh, and consists of six (1 0 0)-oriented domains separated by 30° in-plane rotations about the TiO2 [1 0 0] axis. The in-plane alignment between the TiO2 and BaF2 films is oriented as [0 0 1] TiO2 || BaF2 or [0 0 1] TiO2 || BaF2 . Rocking curve and STM analyses suggest that the TiO2 films are more finely grained than the BaF2 film. STM imaging also reveals that the TiO2 surface has morphological features consistent with the BaF2 surface mesh symmetry. One of the optimally grown TiO2 (1 0 0) films was used to template a CrO2 (1 0 0) film which was grown via chemical vapor deposition. Point contact Andreev reflection measurements indicate that the CrO2 film was approximately 70% spin polarized.  相似文献   
86.
Cerium-containing oxide fluoride glasses CeF3-BaF2-AlF3-SiO2 were prepared under CO and Ar atmospheres. The glass prepared in a CO atmosphere exhibited blue emission under UV irradiation because the hydrolysis of CeF3 to a Ce4+-containing compound during heating process was controlled. The emission spectrum was separable into three peak components by peak analysis. X-ray photoelectron spectroscopy (XPS) spectra were measured to investigate the valency of the elements in the glass. Oxide and fluoride ions in the glass respectively have different electronic states from those in CeO2 and CeF3. The electronic state of cerium ion in the oxide fluoride glass differed from that in CeO2 and CeF3.  相似文献   
87.
Glutathione (GSH-reduced form) is a tripeptide that plays a vital role as an antioxidant to remove xenobiotics in the human body and changes in GSH levels are a marker for the progression of various diseases. In this context, a highly sensitive non-enzymatic electrochemical biosensor for the detection of GSH has been developed using reduced graphene oxide Manganese oxide (rGMnO) nanocomposite as the nano-interface. Initially, graphene oxide was synthesized by Hummer's method and then thermally reduced in the presence of MnO2 in a blast furnace to obtain rGMnO nanocomposite. The nanocomposite was characterized to validate its structure and morphological properties via Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry and amperometry studies showed that upon the addition of GSH, the Pt/rGMnO modified working electrode exhibited a linear response in the range of 1–100 μM at an input voltage of −0.62 V. The developed sensor was found to have a sensitivity of 0.3256 μA μM−1 and LOD of 970 nM with a recovery of 92–104 % in real blood serum samples.  相似文献   
88.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   
89.
The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 μmol h−1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3 and NO2. Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science.  相似文献   
90.
In perfect normal MgAl2O4 spinel the Mg2+ ions occupy tetrahedral 8a sites and Al3+ ions occupy octahedral 16d sites. In reality some cations are exchanged between the cation sublattices forming pairs of antisite defects and thus a degree of “inversion”. Here atomic simulation is used to investigate the influence that antisite defects have on the populations of other intrinsic defects, those associated with Schottky and Frenkel reactions. One consequence is that the total magnesium interstitial concentration is increased substantially over the aluminium interstitial concentration and the magnesium vacancy concentration is increased over the aluminium vacancy concentration but to a much smaller extent. The split structures of isolated interstitial defects and the stability of various defect clusters are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号