首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   34篇
  国内免费   25篇
化学   43篇
力学   357篇
综合类   9篇
数学   53篇
物理学   247篇
  2024年   3篇
  2023年   9篇
  2022年   17篇
  2021年   17篇
  2020年   24篇
  2019年   8篇
  2018年   10篇
  2017年   20篇
  2016年   20篇
  2015年   25篇
  2014年   18篇
  2013年   33篇
  2012年   26篇
  2011年   51篇
  2010年   38篇
  2009年   37篇
  2008年   33篇
  2007年   20篇
  2006年   31篇
  2005年   27篇
  2004年   35篇
  2003年   31篇
  2002年   17篇
  2001年   19篇
  2000年   18篇
  1999年   16篇
  1998年   13篇
  1997年   13篇
  1996年   9篇
  1995年   16篇
  1994年   5篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   9篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1979年   1篇
  1957年   1篇
排序方式: 共有709条查询结果,搜索用时 62 毫秒
51.
Experimental data and correlations available in the literature for the liquid holdup εL and the pressure gradient ΔPTP/L for gas-liquid pipe flow, generally, do not cover the domain 0 < εL < 0.06. Reliable pressure-drop correlations for this holdup range are important for calculating flow rates of natural gas, containing traces of condensate. In the present paper attention is focused on reliable measurements of εL and ΔPTPIL values and on the development of a phenomenological model for the liquid-holdup range 0 < εL < 0.06. This model is called the “apparent rough surface” model and is referred to as the ARS model. The experimental results presented in this paper refer to air-water and air-water + ethyleneglycol systems with varying transport properties in horizontal straight smooth glass tubes under steady-state conditions. The holdup and pressure gradient values predicted with the ARS model agree satisfactorily with both our experimental results and data obtained from the literature referring to small liquid-holdup values 0 < εL < 0.06. Further, it has been shown that in the domain 38 < < 72 mPa m the interfacial tension of the gas-liquid system has no significant effect on the liquid holdup. The pressure gradient, however, increases slightly with decreasing surface tension values.  相似文献   
52.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   
53.
Heat transfer characteristics to both laminar and turbulent pulsating pipe flows under different conditions of Reynolds number, pulsation frequency, pulsator location and tube diameter were experimentally investigated. The tube wall of uniform heat flux condition was considered for both cases. Reynolds number varied from 750 to 12,320 while the frequency of pulsation ranged from 1 to 10 Hz. With locating the pulsator upstream of the inlet of the test section tube, results showed an increase in heat transfer rate due to pulsation by as much as 30% with flow Reynolds number of 1,643 and pulsation frequency of 1 Hz, depending on the upstream location of the pulsator valve. Closer the valve to the tested section inlet, the better improvement in the heat transfer coefficient is achieved. Upon comparing the heat transfer results of the upstream and the downstream pulsation, at Reynolds number of 1,366 and 1,643, low values of the relative mean Nusselt number were obtained with the upstream pulsation. Comparing the heat transfer results of the two studied test sections tubes for Reynolds number range from 8,000 to 12,000 and pulsation frequency range from 1.0 to 10 Hz showed that more improvement in heat transfer rate was observed with a larger tube diameter. For Reynolds number ranging from 8,000 to 12,000 and pulsation frequency of 10 Hz, an improvement in the relative mean Nusselt number of about 50% was obtained at Reynolds number of 8,000 for the large test section diameter of 50 mm. While, for the small test section diameter of 15 mm, at same conditions of Reynolds number and frequency, a reduction in the relative mean Nusselt number of up to 10% was obtained.  相似文献   
54.
Based on an analytical study, a numerical analysis is made of the dynamic stability of a cantilevered steel pipe conveying a fluid. The pipe is modeled by a beam restrained at the left end and supported by a special device (a rotational elastic restraint plus a Q-apparatus) at the right end. The numerical analysis reveals that the critical velocity of the fluid depends on the governing parameters of the problem such as the ratio of the fluid mass to the pipe mass per unit length and the rotational elastic constant at the right end  相似文献   
55.
In this paper, turbulence in a complicated pipe is simulated by using the k-ε model. The ladder-like mesh approximation is used to solve the problem of complicated boundary with the result of numerical simulation favorable. Two computational examples are given to validate the strong adaptability and stability of k-ε model.  相似文献   
56.
Nonlinear MHD Kelvin-Helmholtz (K-H) instability in a pipe is treated with the derivative expansion method in the present paper. The linear stability problem was discussed in the past by Chandrasekhar (1961)[1] and Xu et al. (1981).[6]Nagano (1979)[3] discussed the nonlinear MHD K-H instability with infinite depth. He used the singular perturbation method and extrapolated the obtained second order modifier of amplitude vs. frequency to seek the nonlinear effect on the instability growth rate γ. However, in our view, such an extrapolation is inappropriate. Because when the instability sets in, the growth rates of higher order terms on the right hand side of equations will exceed the corresponding secular producing terms, so the expansion will still become meaningless even if the secular producing terms are eliminated. Mathematically speaking, it's impossible to derive formula (39) when γ 0 2 is negative in Nagano's paper.[3]Moreover, even as early as γ 0 2 → O+, the expansion becomes invalid because the 2nd order modifier γ2 (in his formula (56)) tends to infinity. This weakness is removed in this paper, and the result is extended to the case of a pipe with finite depth. Theproject is supported by the National Natural Science Foundation of China.  相似文献   
57.
管路沿程损失是教学中要讲的内容。其中在过渡粗糙区,人工管和商业管的沿程损失系数存在差异。本文对此差异做了初步分析。从学生对此差异的理解和表面粗糙度的含义两方面探讨了表面粗糙度对此差异的影响。量化探讨表面粗糙度在过渡粗糙区的作用仍是个问题。  相似文献   
58.
Three-dimensional laser Doppler anemometry measurements are performed on developed laminar flow in three helical pipes. The experimental observations are compared to results of numerical calculations employing the fully elliptic numerical method. Good agreement is found between measured data and numerical results. The three helical pipes, with curvature ratios of 0.0734 and 0.1374 and non-dimensional pitches of 0.0793 and 0.193, are adopted to study the effects of curvature and pitch on laminar flow in the experimental approach. The range of Reynolds numbers is 500–2000 to ensure laminar flow in the entire helical pipe. Both the profile shapes of the normal components of the secondary flow and those of the axial flow along the same centerline present not only similar patterns but also similar change when pitch, curvature ratio, and Reynolds number vary. The results demonstrate comprehensive relationships between the axial flow and the secondary flow.  相似文献   
59.
泡沫铝合金填充圆管三点弯曲实验研究   总被引:3,自引:0,他引:3  
用实验方法研究了三种不同管壁厚度、两种跨径的泡沫铝合金填充圆管的三点弯曲力学性能,得到了泡沫铝合金填充管结构承载过程中的三种变形模式,即压入、压入弯曲和管壁下缘拉裂破坏。给出了空管和泡沫铝合金填充管的载荷位移曲线,并进行了比较。实验发现泡沫铝合金填充管结构的承载能力随泡沫铝合金密度的增大而增大,但破坏应变则随之减小。结构承载力的相对提高量随着管壁厚度的减小和跨径的增大而增大。此外,分析了泡沫铝合金提高填充管结构承载能力的机理。泡沫铝合金填充使管壁压入量和管截面抗弯刚度的损失显著减小,从而提高了结构的抗弯能力。  相似文献   
60.
 冲击整形扩径工艺是修复油水井套管损坏的常用技术,根据冲击整形的施工工艺和波 动理论,建立了套损局部位置处水泥环的损伤力学模型,以有限变形理论为基础,采用悬臂 梁力学模型,分段研究了冲击整形时钻杆屈曲的平衡位形及对套管、水泥环产生 的冲击力. 结合水泥环的应力状态, 根据脆性 材料的Mazars损伤模型,建立了水泥环的损伤力学模型. 并分析了水泥环的损伤 状态. 通过与现场测试结果对比,理论计算与实测结果误差在2.7%左右.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号