首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   13篇
  国内免费   1篇
化学   104篇
力学   2篇
综合类   1篇
数学   7篇
物理学   629篇
  2023年   9篇
  2022年   31篇
  2021年   16篇
  2020年   5篇
  2019年   44篇
  2018年   86篇
  2017年   7篇
  2016年   8篇
  2015年   6篇
  2014年   63篇
  2013年   10篇
  2012年   4篇
  2011年   61篇
  2010年   8篇
  2009年   9篇
  2008年   31篇
  2007年   33篇
  2006年   27篇
  2005年   31篇
  2004年   30篇
  2003年   19篇
  2002年   26篇
  2001年   25篇
  2000年   24篇
  1999年   20篇
  1998年   18篇
  1997年   17篇
  1996年   13篇
  1995年   12篇
  1994年   5篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   13篇
  1987年   8篇
排序方式: 共有743条查询结果,搜索用时 0 毫秒
141.
142.
143.
144.
145.
146.
147.
148.
149.
Sound attenuation of air due to climatic conditions is often assumed to be constant and/or negligible in the electro acoustic design of voice alarm (VA) systems. However, air attenuation variations can be significant in large underground spaces and particularly as the frequency increases to the mid to high frequencies which are the most relevant to speech intelligibility. This investigation evaluates and quantifies the impact of the variability of the most influential climatic parameters, air temperature and relative humidity, on the performance of VA systems in underground stations. Computer simulations were employed to predict the effect of varying these climatic parameters on key performance metrics. Results demonstrated a significant increase in the values of reverberation time parameters with both temperature and humidity, at frequencies critical for speech intelligibility. Consequently the values of speech intelligibility related metrics decreased with rising temperatures and humidity. Hence, the study shows how ignoring temperature and humidity effects can lead to calculation errors in the design of VA systems. These errors could cause over-specification of the absorption required of surface materials, and the inaccurate prediction of acoustic and speech intelligibility related parameters.  相似文献   
150.
Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. > 10) relative to the number of participants who provide the MRI data (< 100). Sparse data in a high dimensional space increase the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging measures or their multivariate Gaussian distributions. Thus, our findings demonstrate that estimated multivariate Copula distributions can generate dense sets of brain imaging measures that can in turn be used to train classifiers, and those classifiers are significantly more accurate and more reproducible than are those generated using real-world imaging measures alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号