首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59136篇
  免费   6316篇
  国内免费   5443篇
化学   44704篇
晶体学   736篇
力学   1767篇
综合类   262篇
数学   3321篇
物理学   20105篇
  2024年   81篇
  2023年   549篇
  2022年   1472篇
  2021年   1648篇
  2020年   1928篇
  2019年   1893篇
  2018年   1669篇
  2017年   2003篇
  2016年   2540篇
  2015年   2437篇
  2014年   2791篇
  2013年   4621篇
  2012年   3464篇
  2011年   3846篇
  2010年   3178篇
  2009年   3960篇
  2008年   3677篇
  2007年   3793篇
  2006年   3459篇
  2005年   2926篇
  2004年   2770篇
  2003年   2210篇
  2002年   2311篇
  2001年   1551篇
  2000年   1328篇
  1999年   1135篇
  1998年   970篇
  1997年   885篇
  1996年   834篇
  1995年   754篇
  1994年   654篇
  1993年   504篇
  1992年   478篇
  1991年   306篇
  1990年   227篇
  1989年   218篇
  1988年   311篇
  1987年   185篇
  1986年   132篇
  1985年   123篇
  1984年   124篇
  1983年   43篇
  1982年   107篇
  1981年   142篇
  1980年   136篇
  1979年   130篇
  1978年   102篇
  1977年   71篇
  1976年   71篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
121.
Pyridine‐2‐carboximidates [methyl ( 1a ), ethyl ( 1b ), isopropyl ( 1c ), cyclopentyl ( 1d ), cyclohexyl ( 1e ), n‐octyl ( 1f ), and benzyl ( 1g )] were prepared from the reaction of 2‐cyanopyridine with the corresponding alcohols. Cyclopentyl‐substituted 1d was found to be a highly effective ligand for copper‐catalyzed atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). For example, the observed rate constant for a CuBr/ 1d catalytic system was found to be nearly twice as high as the cyclohexyl‐substituted CuBr/ 1e catalytic system [kobs = (1.19 vs 0.56) × 10?4 s?1). The effects of the solvents, temperature, catalyst/initiator, and solvent/monomer ratio on the ATRP of MMA were studied systematically for the CuBr/ 1d catalytic system. The optimum condition for the ATRP of MMA was found to be a 1:2:1:400 [CuBr]o/[ 1d ]o/[ethyl 2‐bromoisobutyrate]o/[MMA]o ratio at 60 °C in veratrole solution, which yielded well‐defined poly(MMA) with a narrow molecular weight distribution of 1.14. The catalytically active copper complex 2d was isolated from the reaction of CuBr with 1d . Narrow molecular weight distributions as low as 1.06 were achieved for the CuBr/ 1d catalytic system by employing 10% of the deactivator CuBr2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2747–2755, 2004  相似文献   
122.
The crosslinking reaction of 1,2-polybutadiene (1,2-PB) with dicumyl peroxide (DCPO) in dioxane was kinetically studied by means of Fourier transform near-infrared spectroscopy (FTNIR). The crosslinking reaction was followed in situ by the monitoring of the disappearance of the pendant vinyl group of 1,2-PB with FTNIR. The initial disappearance rate (R0) of the vinyl group was expressed by R0 = k[DCPO]0.8[vinyl group]−0.2 (120 °C). The overall activation energy of the reaction was estimated to be 38.3 kcal/mol. The unusual rate equation was explained in terms of the polymerization of the pendant vinyl group as an allyl monomer involving degradative chain transfer to the monomer. The reaction mixture involved electron spin resonance (ESR)-observable polymer radicals, of which the concentration rapidly increased with time owing to a progress of crosslinking after an induction period of 200 min. The crosslinking reaction of 1,2-PB with DCPO was also examined in the presence of vinyl acetate (VAc), which was regarded as a copolymerization of the vinyl group with VAc. The vinyl group of 1,2-PB was found to show a reactivity much higher than 1-octene and 3-methyl-1-hexene as model compounds in the copolymerization with VAc. This unexpectedly high reactivity of the vinyl group suggested that an intramolecular polymerization process proceeds between the pendant vinyl groups located on the same polymer chain, possibly leading to the formation of block-like polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4437–4447, 2004  相似文献   
123.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
124.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   
125.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   
126.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   
127.
借助电子动量谱学结合量子化学理论和其他方法可以给出轨道电子在整个空间的分布信息,由此给出电子运动的完备描述[1,2 ] .清华大学电子动量谱学实验室近几年已成功地对甲烷[3] 、异丁烷[4 ] 、环戊烷[5] 、二乙酰等[6 ] 分子的轨道电子动量分布进行了测量.我们利用第二代电子动量谱仪首次对CH2 F2 分子3a1和2b2 轨道的电子动量谱进行测量,并与理论计算结果作了比较.同时还计算了坐标空间和动量空间中电子在x - y平面的密度分布.电子动量谱学最基本的过程是(e ,2e)反应,即电子与靶粒子碰撞而发生的电离过程.而对于(e ,2e)反应,含有大量信…  相似文献   
128.
 对Cl/HN3/I2产生NCl(a)/I激光的过程进行了化学动力学计算,主要考察了Cl,HN3和I2的初始粒子数密度及其配比对小信号增益系数的影响。结果发现,当温度为400K, 初始Cl粒子数密度为1×1015,1×1016和1×1017cm-3时,小信号增益系数分别达到1.6×10-4,1.1×10-3和1.1×10-2cm-1,获得最佳小信号增益系数的HN3和I2的初始粒子数密度分别为初始Cl粒子数密度的1~2倍和2%~4%。同时,对Cl,HN3和I2配比对小信号增益系数和增益持续时间的影响进行了讨论。  相似文献   
129.
 用射频等离子体方法在玻璃基底上制备的类金刚石(DLC)薄膜,采用离子注入法掺氮,并对掺氮DLC薄膜紫外(UV)辐照前后的性能变化进行了研究。研究结果表明:随氮离子注入剂量及UV辐照时间的增加,位于2 930cm-1附近的SP 3C-H吸收峰明显变小,而位于1 580cm-1附近的SP2C-H吸收峰则明显增强,薄膜的电阻率明显呈下降趋势;随UV辐照时间的增加,位于1 078cm-1附近的Si-O-Si键数量及位于786cm-1附近的Si-C键数量明显增加。即氮离子注入和UV辐照明显改变了DLC薄膜的结构与特性。  相似文献   
130.
The catalytic activities of SO42-/TiO2-MoO3 in synthesizing cyclohexanone ethylene ketal,cyclohexanone 1,2-propanediol ketal, 2-propyl-1,3-dioxolane, 4-methyl-2-isopropyl-1,3-dioxolane,2-isopropyl-1,3-dioxolane, 4-methyl-2-isopropyl-1,3-dioxolane, butanone ethy-lene ketal and butanone 1,2-propanediol ketal were reported. It has been demonstrated that SO42-/TiO2-MoO3 is an excellent catalyst. Various factors concerned in this reaction have been investigated. The optimum conditions have been found, that is, the molar ratio of aldehyde/ketone to alcohol was 1:1.5 or 1:1.3,the mass ratio of the catalyst used to the reactants was 0.25~1.5%, and the reaction time was 45~60 min. Under this conditions, the yield of cyclohexanone ethylene ketal is 82.7%, cyclohexanone 1,2-propanediol ketal is 83.4%, the yield of 2-propyl-1,3-dioxolane is 68.1%,4-methyl-2-isopropyl-1,3-dioxolane is 87.5%, the yield of 2-isopropyl-1,3-dioxolane is 70.7%,4-methyl-2-isopropyl-1,3-dioxolane is 82.5%, the yield of butanone ethylene ketal is 74.1%, and butanone 1,2-propanediol ketal is 94.9%.Some equation and experiment results concerned of the synthetic acetals or ketals were listed as follows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号