首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   1篇
化学   95篇
力学   1篇
物理学   14篇
  2022年   5篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   14篇
  2010年   4篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   12篇
  2005年   6篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
1.
A new analytical method was developed using liquid chromatography with tandem mass spectrometry for the routine analysis of 31 multi-class pesticide residues and applied to approximately 50 fresh fruit and vegetable samples (green bean, cucumber, pepper, tomato, eggplant, watermelon, melon and zucchini). Extraction of the pesticides with ethyl acetate was carried out. The optimal ionisation conditions were selected for each pesticide in the same run. The procedure was validated and the values of some merit figures, such as recovery, precision, linear range, detection limit and quantification limit for each pesticide were calculated together with its calculated expanded uncertainty (U). The average recoveries in cucumber obtained for each pesticide ranged between 74 and 105% at two different fortification levels (n = 10 each) that ranged between 9 and 250 ng g(-1) (depending on the pesticide). The uncertainty associated to the analytical method was lower than 23% for all compounds tested. The calculated limits of detection and quantitation were typically <1 ng g(-1) that were much lower than the maximum residue levels established by European legislation.  相似文献   
2.
Because organotin compounds (OTC) are widely used in many fields of activity, they have become an ubiquitous environmental presence. The presence of organotins in the environment impacts upon food safety, making it important to monitor the levels of organotin pesticides in fruits and vegetables. Nevertheless, only a few studies have been published on organotin speciation in plants. The objective of the present study was to evaluate and optimise a specific procedure based on pressurised solvent extraction (PSE) that is suitable for monitoring organotin content in vegetables. In ASE, solvents are used at elevated temperatures and pressures to increase the rate and efficiency of the extraction process. The results from this procedure were compared to those from the technique usually employed, solid/liquid extraction (SLE) performed in an acidic solvent by mechanical shaking. Three extracting solutions were tested—methanol, ethyl acetate and a mixture of methanol and ethyl acetate—and the mixture was found to give the most quantitative results while preserving the speciation. French bean and lettuce leaves as well as potato tubers were used as the plant materials. These vegetables were considered because they are the vegatables consumed in the most quantities in Europe. The study focuses on trisubstituted OTCs, which are the most toxic tin species. The samples were spiked with four trisubstituted organotins: tributyltin (TBT), triphenyltin (TPhT), tricyclohexyltin (TcHexT) and trioctyltin (TOcT). The influence of the pressure and the temperature of the PSE on the quantitativity of the process and on species preservation was evaluated using the experimental design methodology. The optimised PSE allowed detection limits down to 1–2 ng (Sn) g–1 to be reached. These are higher than those obtained by SLE (0.1–1 ng (Sn) g–1). Although the repeatability is similar for both PSE and SLE (2–12% for triorganotin compounds), this appears to be highly time-dependent in the case of SLE. Comparison with SLE confirms that PSE is an interesting tool for vegetable analysis considering the satisfactory OTC preservation and repeatability obtained for a relatively short extraction duration (only 15 min against 2–12 h for SLE).  相似文献   
3.
建立了GC—MS/SIM与大体积进样技术结合测定蔬菜、水果中包括有机磷类、氨基甲酸酯类、有机氯类、菊酯类在内的17种农药的方法。样品经丙酮提取,OASIS HLB固相萃取小柱净化后,采用GC—Ms的选择离子模式和大体积进样技术进行测定,能够使相对检出限降低1~2个数量级。大多数农药的线性范围为0.05~10mg/kg,相关系数为0.9943—0.9996,相对标准偏差为3.5%-10.3%,回收率范围在77%~107%之间.方法能满足果蔬中17种农残限量的的检测要求,具有灵敏、快速、重复性好的特点。  相似文献   
4.
Pesticide residue in vegetables has been considered as a serious food safety problem across the whole world. This study investigates a novel advanced oxidation process (AOP), namely the coupled free chlorine/ultrasound (FC/US) process for the removal of three typical pesticides from lettuce. The removal efficiencies of dimethoate (DMT), trichlorfon (TCF) and carbofuran (CBF) from lettuce reached 86.7%, 79.8% and 71.3%, respectively by the FC/US process. There existed a synergistic effect in the coupled FC/US process for pesticide removal and the synergistic factors reached 22.3%, 19.0% and 36.4% for DMT, TCF and CBF, respectively. Based on the analysis of mass balance of pesticides, the synergistic effect was probably attributed to the efficient oxidation of pesticides both in vegetables and in water by the generated free radicals and FC. The surface area and surface structure of vegetables strongly affected the removal of pesticides by FC/US. The removal efficiency of DMT increased from 80.9% to 88.1% as solution pH increased from 5.0 to 8.0, and then decreased to 84.1% when solution pH further increased to 9.0. When the ultrasonic frequency changed from 20 to 40 kHz, a remarkable improvement in pesticide removal by FC/US was observed. As the FC concentration increased from 0 to 15 mg L–l, the removal efficiencies of pesticides increased firstly, and then became stagnant when the FC concentration further increased to 25 mg L–l. The pesticide degradation pathways based on the identified intermediates were proposed. The total chlorophyll content was reduced by less than 5% after the FC/US process, indicating a negligible damage to the quality of vegetables. It suggests that the FC/US process is a promising AOP for pesticides removal from vegetables.  相似文献   
5.
GC-MS法测定拟除虫菊酯类农药残留   总被引:3,自引:0,他引:3  
介绍了蔬菜水果中8种拟除虫菊酯农药残留的快速检测方法。采用选择离子-气相色谱-质谱联用(SIM-GC-MS)方式,依据保留时间和特征离子丰度比对农药进行确证。此方法可以在13.50 min内快速检测拟除虫菊酯农药残留,并可同时定性和定量,用于蔬菜水果等多种作物的检验。回收率在75%~108%间,相对标准偏差<10%,检出限为0.000 90~0.008 4 mg.kg-1。  相似文献   
6.
In this work, a new multi-residue methodology using liquid chromatography-time-of-flight mass spectrometry (LC-TOF-MS) for the quantitative (routine) analysis of 15 pesticide residues has been developed. The analytical performance of the method was evaluated for different types of fruit and vegetables: pepper, broccoli, tomato, orange, lemon, apple and melon. The accurate mass measurements were compared in different matrices at significantly different concentration levels (from 0.01 to 0.5 mg/kg) obtaining accuracy errors lower than 2 ppm, which is well within the accepted limits for elemental confirmation. Linearity of response over two orders of magnitude was demonstrated (r > 0.99). Matrix effects resulting in suppression or enhancement of the response were frequently observed, most notably in broccoli and citrus. Instrumental limits of detection (LOD) were between 0.0005 and 0.03 mg/kg depending on the commodity and pesticide studied, all being within European Union regulations for food monitoring program. Finally, the methodology was applied to the analysis of two samples from an inter-laboratory exercise. The high degree of confirmation for target pesticides by accurate mass measurements demonstrated the applicability of the method in routine analysis. This study is a valuable indicator of the potential of LC-TOF-MS for quantitative multi-residue analysis of pesticides in vegetables and fruits.  相似文献   
7.
The coupled-column (LC-LC) system, consisting of a first column packed with internal surface reversed phase (ISRP) (50 x 4.6mm ID) and a Chrompack C18 (100 x 4.6 mm ID) as second column, allowed the simultaneous determination of five benzoylurea insecticides in dichloromethane (CH2Cl2) extracts of vegetable samples without any clean-up step. This system was combined with a photochemically induced fluorescence (PIF) post-column derivatization in order to provide strongly fluorescent photoproducts from the non-fluorescent benzoylureas. Limits of detection ranged from 0.21 to 0.98 microg L(-1) of pesticide (equivalent to 0.14-0.65 microg kg(-1) in vegetable samples) and limits of determination ranged from 4.0 to 10.0 microg L(-1) (equivalent to 2.7-6.7 microg kg(-1)). Linearity of the method was established between 2 and 1800 microg L(-1), depending upon the compound. Validation of the total method was performed by randomly analyzing recoveries of four vegetable samples (aubergine, cucumber, green bean, and tomato) spiked at two levels of concentration (10.0 and 33.3 microg kg(-1)). The combination of the LC-LC system with PIF detection provides a sensitive, selective, and rapid method for the determination of pesticides in vegetable samples at levels lower than the maximum residue levels (MRLs) established for these compounds by Spanish legislation.  相似文献   
8.
During recent years matrix effects in liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) have quickly become a major concern in food analysis. The phenomenon of ion suppression can lead to errors in the quantification of the analytes of interest, as well as can affect detection capability, precision, and accuracy of the method. Sample dilution is an easy and effective method to reduce interfering compounds, and so, to diminish matrix effects. In this work, matrix effects of 53 pesticides in three different matrices (orange, tomato and leek) were evaluated. Several dilutions of the matrix were tested in order to study the evolution of signal suppression. Dilution of the extracts led to a reduction of the signal suppression in most of the cases. A dilution factor of 15 demonstrated to be enough to eliminate most of the matrix effects, opening the possibility to perform quantification with solvent based standards in the majority of the cases. In those cases where signal suppression could not be reduced, a possible solution would be to use stable isotope-labelled internal standards for quantification of the problematic pesticides.  相似文献   
9.
A sensitive and efficient solid-phase microextraction (SPME) method for the determination of seven pyrethroid insecticides including fenpropathrin, λ-cyhalothrin, deltamethrin, fenvalerate, permethrin, τ-fluvalinate and bifenthrin in cucumber and watermelon samples using high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) was developed and validated. The optimum SPME conditions were used for the extraction of samples of both matrices (extraction time 30 min, stirring rate 1100 rpm, extraction temperature 65 °C, sample pH 3, soaking time 7 min, desorption time 5 min, ACN content 25%, desorption and soaking solvent was the mobile phase and in static mode). The method was validated in terms of limits of detection (LODs) and the limits of quantification (LOQs) in both IUPAC and EURACHEM criteria. LODs and LOQs were achieved in values lower than the maximum residue levels (MRLs) established in the Spanish regulations for all pesticides in this study (MRLs range between 0.01 and 0.1 mg kg−1 for all pyrethroid insecticides in both matrices). LOQs according to the second criterion were between 1.5 and 5 μg kg−1 for cucumber; and between 1.3 and 5 μg kg−1 for watermelon samples. Precision and recovery studies were evaluated at two concentration levels for each matrix. Good precision was obtained and relative standard deviation values were less than 10% in all cases. Recovery values were calculated at 0.05 and 0.5 mg kg−1 levels (n = 6) and they ranged between 93% and 108% for cucumber and between 91% and 110% for watermelon samples. Applicability of the method to pyrethroids in cucumber and watermelon of commercial samples was demonstrated.  相似文献   
10.
This paper reports voltammetric sequential determination of Pt(II), Pd(II), and Rh(III), by square-wave adsorption stripping voltammetry (SWAdSV), and Pb(II), by square-wave anodic stripping voltammetry (SWASV), in vegetable environmental matrices. Analytical procedures were verified by the analysis of the standard reference materials: Olive Leaves BCR-CRM 062 and Tomato Leaves NIST-SRM 1573a. Precision and accuracy, expressed as relative standard deviation and relative error, respectively, were always less than 6% and the limits of detection (LOD) for each element were below 0.096 g g–1. Once set up on the standard reference materials, the analytical procedure was transferred and applied to laurel leaves sampled in proximity to a superhighway and in the Po river mouth area. A critical comparison with spectroscopic measurements is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号