首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2705篇
  免费   426篇
  国内免费   101篇
化学   92篇
晶体学   6篇
力学   688篇
综合类   14篇
数学   838篇
物理学   1594篇
  2024年   3篇
  2023年   22篇
  2022年   49篇
  2021年   63篇
  2020年   80篇
  2019年   80篇
  2018年   62篇
  2017年   60篇
  2016年   86篇
  2015年   68篇
  2014年   142篇
  2013年   220篇
  2012年   144篇
  2011年   211篇
  2010年   145篇
  2009年   209篇
  2008年   193篇
  2007年   171篇
  2006年   142篇
  2005年   121篇
  2004年   131篇
  2003年   89篇
  2002年   126篇
  2001年   96篇
  2000年   67篇
  1999年   57篇
  1998年   61篇
  1997年   59篇
  1996年   34篇
  1995年   31篇
  1994年   45篇
  1993年   31篇
  1992年   16篇
  1991年   10篇
  1990年   19篇
  1989年   10篇
  1988年   9篇
  1987年   10篇
  1986年   7篇
  1985年   17篇
  1984年   14篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1970年   1篇
  1957年   1篇
排序方式: 共有3232条查询结果,搜索用时 15 毫秒
81.
《Physics letters. A》2020,384(18):126376
We investigate vortex configuration confined in antiferromagnetic thin disks. By virtue of sublattice mismatch at the disk borders, we propose a model that takes such a magnetostatic-like cost into account. The model predicts that onion-like configuration interpolates between curly and divergent vortex. Concerning its dynamics, it is shown that the vortex acquires oscillatory dynamics with well-defined amplitude and frequency that may be controlled on demand by an alternating spin-polarized current. These findings may be useful for the emerging field of antiferromagnetic topological spintronics, once vortex dynamics may be controlled by purely electronic means.  相似文献   
82.
《Physics letters. A》2020,384(18):126377
Structure formation in turbulence can be understood as an instability of “plasma” formed by fluctuations serving as effective particles. These “particles” are quantumlike in the sense that their wavelengths are non-negligible compared to the sizes of background coherent structures. The corresponding “kinetic equation” describes the Wigner matrix of the turbulent field, and the coherent structures serve as collective fields. This formalism is usually applied to manifestly quantumlike or scalar waves. Here, we show how to systematically extend it to more complex systems using compressible Navier–Stokes turbulence as an example. In this case, the fluctuation Hamiltonian is a five-dimensional matrix operator and diverse modulational modes are present. As an illustration, we calculate these modes for a sinusoidal shear flow and find two modulational instabilities. One of them is specific to supersonic flows, and the other one is a Kelvin–Helmholtz-type instability that is a generalization of the known zonostrophic instability. Our calculations are readily extendable to other types of turbulence, for example, magnetohydrodynamic turbulence in plasma.  相似文献   
83.
The generalized aerodynamic force (GAF) matrix is derived for the Unsteady Vortex Lattice Method (UVLM) without the assumption of out-of-plane dynamics. As a result, the approach naturally includes in-plane motion and forces unlike the doublet lattice method (DLM). The derived UVLM GAF is therefore applicable to industry-standard techniques for aeroelastic stability analyses, such as the p–k method. In this work, the fluid–structure interpolation is performed with radial basis functions for surface interpolation. The generalized aerodynamic forces computed with the UVLM are verified against the DLM from NASTRAN on a simple flat plate configuration. The ability of the UVLM to include steady loads is verified with a T-tail flutter case and the results confirm the importance of including steady loads for T-tail flutter analysis. The modal frequency domain VLM therefore provides the same level of efficiency and accuracy than the DLM, but without the restrictions and with the ability to handle complex geometries. It is therefore a viable replacement to the DLM.  相似文献   
84.
We present a matrix coupled dispersionless(CD) system. A Lax pair for the matrix CD system is proposed and Darboux transformation is constructed on the solutions of the matrix CD system and the associated Lax pair. We express an N soliton formula for the solutions of the matrix CD system in terms of quasideterminants. By using properties of the quasideterminants, we obtain some exact solutions, including bright and dark-type solitons, rogue wave and breather solutions of the matrix CD system. Furthermore, it has been shown that the solutions of the matrix CD system are expressed in terms of solutions to the usual CD system, sine-Gordon equation and Maxwell-Bloch system.  相似文献   
85.
The (1+2)-dimensional chiral nonlinear Schrödinger equation (2D-CNLSE) as a nonlinear evolution equation is considered and studied in a detailed manner. To this end, a complex transform is firstly adopted to arrive at the real and imaginary parts of the model, and then, the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE. The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions.  相似文献   
86.
《力学快报》2020,10(6):419-428
Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency. The near-ground evolution characteristics of wake vortices form the foundation of the wake separation system design. In this study, we analysed the near-ground evolution of vortices in the wake of a domestic aircraft ARJ21 initialised by the lift-drag model using large eddy simulations based on an adaptive mesh. Evolution of wake vortices formed by the main wing, flap and horizontal tail was discussed in detail. The horizontal tail vortices are the weakest and dissipate rapidly, whereas the flap vortices are the strongest and induce the tip vortex to merge with them. The horizontal tail and flap of an ARJ21 do not significantly influence the circulation evolution, height change and movement trajectory of the wake vortices. The far-field evolution of wake vortices can therefore be analysed using the conventional wake vortex model.  相似文献   
87.
In order to protect the vulnerable turbine components from extreme high temperature, coolant flow is introduced from the compressor to the disk cavity, inevitably interacting with the main flow. This paper describes an experimental investigation of the interaction between the main flow and the purge flow in a low-speed turbine cascade with three purge flow rates, Cm = 0, Cm = 1%, and Cm = 2%. In order to study the effect of the interaction between the main flow and the purge flow on the secondary flows, a Rortex method developed by Liu Chaoquan is introduced to identify the vortex in the flow field. In the meantime, a method to calculate the mean entropy production rate based on the particle image velocimetry (PIV) result is adopted to investigate the flow loss. The PIV result indicates that the purge flow has a prominent impact on the flow field of the cascade passage, changing the velocity distribution that induces a local blockage area. The results of vortex identification show that the purge flow promotes the generation of the passage vortex near the suction side. In addition, the purge flow makes the passage vortex migrate to the tip wall direction, enlarging the region affected by the secondary flow. The mean entropy production (MEP) result shows that the flow loss is mainly caused by the passage vortex. The coincidence of the high-MEP region and the location of the passage vortex indicates that the purge flow increases the secondary flow loss by affecting the formation and the migration of the passage vortex.  相似文献   
88.
Propagation dynamics of the cosh-Airy vortex(CAiV) beams in a chiral medium is investigated analytically with Huygens–Fresnel diffraction integral formula. The results show that the CAiV beams are split into the left circularly polarized vortex(LCPV) beams and the right circularly polarized vortex(RCPV) beams with different propagation trajectories in the chiral medium. We mainly investigate the effect of the cosh parameter on the propagation process of the CAiV beams.The propagation characteristics, including intensity distribution, propagation trajectory, peak intensity, main lobe's intensity, Poynting vector, and angular momentum are discussed in detail. We find that the cosh parameter affects the intensity distribution of the CAiV beams but not its propagation trajectory. As the cosh parameter increases, the distribution areas of the LCPV and RCPV beams become wider, and the side lobe's intensity and peak intensity become larger. Besides, the main lobe's intensity of the LCPV and RCPV beams increase with the increase of the cosh parameter at a farther propagation distance, which is confirmed by the variation trend of the Poynting vector. It is significant that we can vary the cosh parameter to control the intensity distribution, main lobe's intensity, and peak intensity of the CAiV beams without changing the propagation trajectory. Our results may provide some support for applications of the CAiV beams in optical micromanipulation.  相似文献   
89.
The interaction between the film-cooling jet and vortex structures in the turbine passage plays an important role in the endwall cooling design. In this study, a simplified topology of a blunt body with a half-cylinder is introduced to simulate the formation of the leading-edge horseshoe vortex, where similarity compared with that in the turbine cascade is satisfied. The shaped cooling hole is located in the passage. With this specially designed model, the interaction mechanism between the cooling jet and the passage vortex can therefore be separated from the crossflow and the pressure gradient, which also affect the cooling jet. The loss-analysis method based on the entropy generation rate is introduced, which locates where losses of the cooling capacity occur and reveals the underlying mechanism during the mixing process. Results show that the cooling performance is sensitive to the hole location. The injection/passage vortex interaction can help enhance the coolant lateral coverage, thus improving the cooling performance when the hole is located at the downwash region. The coolant is able to conserve its structure in that, during the interaction process, the kidney vortex with the positive rotating direction can survive with the negative-rotating passage vortex, and the mixture is suppressed. However, the larger-scale passage vortex eats the negative leg of the kidney vortices when the cooling hole is at the upwash region. As a result, the coolant is fully entrained into the main flow. Changes in the blowing ratio alter the overall cooling effectiveness but have a negligible effect on the interaction mechanism. The optimum blowing ratio increases when the hole is located at the downwash region.  相似文献   
90.
As shown by Crow in 1970, the evolution of two almost parallel vortex filaments with opposite circulation exhibits a long-wave instability. Ultimately, the symmetric mode increases its amplitude reconnecting both filaments and ending into the formation of an almost periodic structure of vortex rings. This is a universal process, which appears in a wide range of scales: from the vortex trails behind an airplane to a microscopic scale of superfluids and Bose–Einstein condensates. In this paper, I will focus on the vortex reconnection for the latter case by employing Gross–Pitaevskii theory. Essentially, I focus on the well-known laws of interaction and motion of vortex filaments. By means of numerical simulations, as well as theoretically, I show that a self-similar finite-time dynamics manifests near the reconnection time. A self-similar profile is selected showing excellent agreement with numerical simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号