首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3163篇
  免费   394篇
  国内免费   188篇
化学   2056篇
晶体学   188篇
力学   46篇
综合类   9篇
数学   267篇
物理学   1179篇
  2024年   4篇
  2023年   16篇
  2022年   43篇
  2021年   61篇
  2020年   126篇
  2019年   87篇
  2018年   67篇
  2017年   83篇
  2016年   157篇
  2015年   118篇
  2014年   138篇
  2013年   249篇
  2012年   243篇
  2011年   186篇
  2010年   174篇
  2009年   237篇
  2008年   195篇
  2007年   170篇
  2006年   197篇
  2005年   121篇
  2004年   129篇
  2003年   94篇
  2002年   170篇
  2001年   106篇
  2000年   66篇
  1999年   61篇
  1998年   62篇
  1997年   46篇
  1996年   39篇
  1995年   50篇
  1994年   36篇
  1993年   28篇
  1992年   34篇
  1991年   21篇
  1990年   20篇
  1989年   15篇
  1988年   14篇
  1987年   5篇
  1985年   16篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   7篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1974年   5篇
  1973年   7篇
排序方式: 共有3745条查询结果,搜索用时 31 毫秒
81.
The comparative interfacial oxidation kinetics of the approximate structural isomers trans-(O)2ReV(py)+4 and cis-(O)2ReV(bpy)(py)+2 (py, pyridine; bpy, 2,2′-bipyridine) have been assessed in aqueous solution via conventional cyclic voltammetry at a highly ordered pyrolytic graphite (HOPG) electrode. HOPG was employed because of its known propensity to diminish interfacial electron transfer (ET) rates (by ca. three to four orders of magnitude) and because of a probable lack of importance of kinetic work terms (diffuse double-layer corrections). Measured rates for the trans complex exceed those for the cis by about a factor of 3. Expressed as an effective activation Gibbs energy difference ΔG*, this corresponds to a cis-trans difference of ca. 3 kJ mol−1. The actual vibrational barriers to ET have determined from a combination of published X-ray structural results (trans complex) and new resonance Raman results (cis complex). The values are 0.6 kJ mol −1 for the trans oxidation and 4.4 kJ mol−1 for the cis oxidation (i.e. close to the barrier difference inferred from rate measurements). Further analysis shows that most of the barrier difference is associated with displacement of a (predominantly) Re-N(bpy) stretching mode found only in the cis system. Differences in metal-oxo displacements (cis > trans) are also implicated.  相似文献   
82.
Tetraphenylporphyrinatoantimony(V) complexes, linked to boron-dipyrrin chromophores on axial ligands, were synthesized. The fluorescence spectra of 1a, 1b and 1c (3-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]propoxo(methoxo)antimony(V) tetraphenylporphyrin bromide (1a); 6-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]hexyloxo(methoxo)antimony(V) tetraphenylporphyrin bromide (1b); bis{3-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]propoxo}antimony(V) tetraphenylporphyrin bromide (1c)) were analyzed under the excitations of N,N′-difluorobornyl-5-dipyrrinylphenyl (Bdpy) and tetraphenylporphyrinatoantimony(V) (Sb(TPP)) chromophores. Under the irradiation of Bdpy chromophore, the excitation energy was transferred from Bdpy chromophore to the Sb(TPP) moiety at 0.13–0.40 of the quantum yields, even in a polar solvent. On the other hand, the emission of Sb(TPP) chromophores was quenched by Bdpy chromophores at rate constants of 108–109 s−1, independent of on the solvent polarity. Under the excitation of the Bdpy chromophore of 1d (3-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]propoxo(phenyloxo)antimony(V) tetraphenylporphyrin bromide) involving both the Bdpy and the phenoxy chromophores on the axial ligands, the excited singlet state of the Sb(TPP) chromophore generated by the energy transfer from the Bdpy chromophore was quenched by the phenoxy ligand via non-radiative processes involving electron transfer. However, rapid back electron-transfer may occur because no absorption of the anion radical of Sb(TPP) was observed by nanosecond laser photolysis.  相似文献   
83.
The rate of electron transfer from organic sulfides to [CrV(ehba)2] (ehba-2-ethyl-2-hydroxy butyric acid) decreases with a decrease in the polarity of the medium. The anionic surfactant, SDS and the cationic surfactant, CTAB have different effects on the kinetics of this reaction. The micellar inhibition observed in the presence of SDS is probably due to the decrease in the polarity and the electrostatic repulsion faced by the anionic oxidant from the anionic micelle and the partition of the hydrophobic substrate between the aqueous and micellar phases. The micellar catalysis in the presence of CTAB is attributed to the increase in the concentration of both reactants in the micellar phase. This micellar catalysis is observed to offset the retarding effects of the less polar micellar medium and the unfavorable charge-charge interaction between the + charge developed on S center in the transition state and the cationic micelle. This catalysis is contrary to the enormous micellar inhibition observed with IO4, HSO5 and HCO4 oxidation of organic sulfides.  相似文献   
84.
The reactive ion etching of GaAs, InP, InGaAs, and InAlAs in CF3Br/Ar discharges was investigated as a function of both plasma power density (0.56-1.3 W - cm–2) and total pressure (10-40 mTorr) The etch rate of GaAs in 19CF3Br:1Ar discharges at 10 m Torr increases linearly with power density, from 600 Å min–1 at 0.56 W · cm–2, to 1550 Å · min at 1.3 W · cm–2. The in-based materials show linear increases in etch rates only for power densities above – 1.0 W · cm–2. These etch rates are comparable to those obtained with CCI2F2:O2 mixtures under the same conditions. Smooth surface morphologies and vertical sidewalls are obtained over a wide range of plasma parameters. Reductions in the near-surface carrier concentration in n-type GaAs are evident for etching with power densities of >0.8 W cm–2, due to the introduction of deep level trapping centers. At 1.3 W· cm–2, the Schottky barrier height of TiPtAu contacts on GaAs is reduced from 0.74 to 0.53 eV as a result of this damage, and the photoluminescent intensity from the material is degraded. Alter RIE, we detect the presence of both F and Br on the surface of all of the semiconductors. This contamination is worse than with CCl2F2-based mixtures. High-power etching with CF3Br/Ar together with Al-containing electrodes can lead to the presence of a substantial layer of aluminum oxide on the samples if the moisture content in the reactor is appreciable.  相似文献   
85.
Changes of the rheological properties of hyaluronic acid (sodium-magnesium salt) solutions after exposure to UV radiation indicate a vigorous decrease in their viscosity, but its still strong shear rate dependence. Whereas the presence of the singlet oxygen sensitizer (anthracene-1-sulphonic acid) brings about a loss of shear dependence; the studied solutions show newtonian behavior.  相似文献   
86.
fine structure was observed in the conductance curve of a tunneling junction composed of a single crystalline Bi2212 and an evaporated SnO2 film. It is similar to those of Bi2212-GaAs mechanical junctions and there is a certain correspondence between the structure and the phonon density of states. Thus the previous conclusion that the structure is due to phonons has been complemented by this work. The energy gap 2 was 57 meV at 13 K and T c was 78 K. 2(0)/k B T c is then 8.3. (T) showed the BCS-like temperature dependence.  相似文献   
87.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   
88.
The photochemistry of some members of the two series of γ-phenyl substituted acyclic β, γ-unsaturated ketones 1 and 2 upon direct irradiation with γ 310nm has been investigated, viz 1c–1h and 2b+2c.The alkyl substituted (E)-5-phenyl-4-penten-2-ones 1c–1h yield the corresponding 1,3-acyl shift products and (Z)-isomers, and 1g and 1h in addition two decarbonylated products. 2b only yields the (Z)-isomer and some benzaldehyde, but 2c yields the 1,3-acyl shift product, the ODPM product, three hydrocarbons formed by disproportionation of the allyl radical, and some benzaldehyde. The β-phenyl β, γ-UK 3a proved to be photostable. The 1,3-acyl shift products of 1c–1h result mainly from the singlet excited state in a cage radical process. The exclusive formation of the (E)-configuration of the 1,3-acyl shift product is explained in terms of conformational preference of the intermediate allyl radical. It is proposed that the formation of the (Z)-isomer proceeds from 1T(π -π*) which is populated according to
. Evidence is presented which supports the proposed mechanism.The β,γ-UK 2b containing a benzoyl moiety leads to a higher degree of (E)-(Z) isomerization than the corresponding 1d which has an acetyl moiety.The triplet energies of (E)- and (Z)-1h are 56 and ca 70 kcal/mol respectively.  相似文献   
89.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
90.
Phosphane, Phosphite, Phosphido, Complexes of Vanadium(V) Complex formation of tert-butylimidovanadium(V)trichloride ( 1 ) with phosphanes und phosphites has been studied. Syntheses of phosphidovanadium(V) compounds tC4H9N?VCp(NHtC4H9)[P(SiMe3)2] and tC4H9N?VCp(NiProp2)(PR2) (R?SiMe3, Ph) are described starting from the corresponding chlorovanadium(V) complexes. The reaction of 1 with silver hexafluorophosphate yields a bis(fluoro)phosphidovanadium(IV complex [(μ-PF2)2V2Cl2)(NtC4H9)2]; as primary intermediate product of the unknown redox reaction a cationic vanadium(V) complex [tC4H9N?VCl2 · PPh3]+PF6? has been isolated. 1 reacts with an excess of diisopropylamine forming tC4H9N?V(NiProp2)Cl2 ( 16 ); in addition the following diisopropylamido-tert-butylimidovanadium(V) compounds tC4H9N?VCp(NiProp2)Cl ( 3 ) and tC4H9N?V(NiProp2)X2 (X?CH2CMe3, OtC4H9, CH3COO) has been prepared. All compounds obtained are characterized by 1H, 51V, 31P NMR spectroscopy. The X-ray diffraction analysis of 16 and 3 indicate a planar coordination sphere of the amido nitrogen atom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号