首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   0篇
  国内免费   4篇
化学   45篇
物理学   116篇
  2023年   11篇
  2022年   16篇
  2021年   28篇
  2020年   20篇
  2019年   2篇
  2018年   11篇
  2017年   10篇
  2016年   3篇
  2015年   5篇
  2014年   14篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1995年   2篇
  1988年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
101.
Food color is a feature that provides preliminary information about their preference or consumption. There are dominant pigments that determine the color of each food; the most important pigments are anthocyanins (red–purple color), chlorophylls (green color), carotenoids (yellow-orange color), and betalains (red color). These pigments can be easily affected by temperature, light, oxygen, or pH, thereby altering their properties. Therefore, while processing, it is necessary to prevent the deterioration of these pigments to the maximum possible extent. Ultrasonication, which is one of the emerging non-thermal methods, has multidimensional applications in the food industry. The present review collates information on various aspects of ultrasonication technology, its mechanism of action, influencing factors, and the competence of different ultrasonication applications (drying, irradiation, extraction, pasteurization, cooking, tempering, etc.) in preserving the color of food. It was concluded that ultrasonication treatments provide low-temperature processing at a short time, which positively influences the color properties. However, selecting optimum ultrasonic processing conditions (frequency, power, time, etc.) is crucial for each food to obtain the best color. The key challenges and limitations of the technique and possible future applications are also covered in the paper, serving as a touchstone for further research in this area.  相似文献   
102.
The stability along with thermal and rheological characteristics of ionanofluids (INFs) profoundly depend on the protocol of preparation. Therefore, in this work, the effect of ultrasonication time on microstructure, thermal conductivity, and viscosity of INFs containing 0.2 wt% of originally ultra-long multi-walled carbon nanotubes (MWCNTs) and four different ILs, namely 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium thiocyanate, or 1-ethyl-3-methylimidazolium tricyanomethanide, was studied. The INFs were obtained by a two-step method using an ultrasonic probe. The ultrasonication process was performed for 1, 3, 10, or 30 min at a constant nominal power value of 200 W. The obtained results showed that for the shortest sonication time, the highest thermal conductivity enhancement of 12% was obtained. The extended sonication time from 1 to 30 min caused the cutting of MWCNTs and breaking the nanoparticle clusters, leading to a decrease in the average length of the nanotube bundles by approx. 70%. This resulted in a decline in thermal conductivity even by 7.2% and small deviations from the Newtonian behavior of INFs.  相似文献   
103.
Nanoparticles possess unique, size-driven properties. However, they can be challenging to use as they easily agglomerate - their high surface area-to-volume ratio induces strong interparticle forces, generating agglomerates that are difficult to break. This issue prevails in organic particles as well, such as cellulose nanocrystals (CNCs); when in their dried form, strong hydrogen bonding enhances agglomeration. Ultrasonication is widely applied to prepare CNC suspensions, but the methodology employed is non-standardized and typically under-reported, and process efficiency is unknown. This limits the ability to adapt dispersion protocols at industrial scales. Herein, numerical simulations are used in conjunction with validation experiments to define and optimize key parameters for ultrasonic dispersion of CNCs, allowing an operating window to be inferred.  相似文献   
104.
Ultrasonic treatment can improve the compatibility between a hydrophobic material and a hydrophilic polymer. The light transmittance, crystalline structure, microstructure, surface morphology, moisture barrier, and mechanical properties of a composite film with or without ultrasonication were investigated. Ultrasound increases the film’s light transmittance, resulting in a film that has good transparency. Ultrasonication did not change the crystalline structure of the polymer film, but promoted V-type complex formation. The surface of the film became smooth and homogeneous after the film-form suspension underwent ultrasonic treatment. Compared to the control film, after ultrasonication at 70% amplitude with a duration of 30 min, the average roughness and maximum roughness declined from 212 nm to 17.6 nm and from 768.7 nm to 86.5 nm, respectively. The composite film with ultrasonication exhibited better tensile and moisture barrier properties than the nonsonicated film. However, long-term and strong ultrasonication will destroy the polymer structure to some extent.  相似文献   
105.
Introducing ultrasound irradiation to the electrodeposition process can significantly improve the physical and chemical properties of deposited films. Meanwhile, the beneficial effects from supercritical-CO2, such as high diffusivity, high permeability, low surface tension, etc., would improve the electrodeposition process with better surface quality. In the shed of the light, the present work deals with the preparation of copper (Cu) films using the integrated techniques, i.e., ultrasonic-assisted supercritical-CO2 (US-SC-CO2) electrodeposition approach. For comparison, Cu films were also prepared by normal supercritical-CO2 (SC-CO2) and conventional electrodeposition methods. To investigate the characteristics of Cu films, surface morphology analysis, roughness analysis, X-ray diffraction studies (XRD), Linear polarization, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were performed. In this work, EIS analysis was utilized for interfacial charge transfer resistance analysis with 5 mM [Fe(CN)6]−3/−4 redox system and corrosion analysis with 3.5 wt% NaCl solution. The observed results revealed that the film prepared with the US-SC-CO2 method have superior properties than those produced by normal SC-CO2 and conventional methods. Due to the combination of US-SC-CO2, the cavitation implosion occurs rapidly that enriches the deposited film quality, such as sufficient grain size, smoother surface, enhanced corrosion resistance, and charge carrier dynamics. On the other hand, the ultrasound effect with SC-CO2 helped to remove the weakly adhered metal ions on the electrode’s surface.  相似文献   
106.
This study examined anthocyanin extraction using the application of ultrasound to raw freeze dried, microwaved and raw sliced Purple Majesty potato, a new pigmented potato variety rich in anthocyanins. A 20 kHz probe was used for the sonication at 3 different amplitudes (30%, 50% and 70%) and ethanol in water at different ratios (50:50 and 70:30 v/v) was used for the extraction. Anthocyanin extraction from raw freeze dried purple potato was optimal at an ethanol:water ratio (70:30; v/v) after 5 min of ultrasonication, while the least amount of anthocyanins was extracted from raw sliced potatoes. The application of microwaves (as a pre-treatment) before the UAE resulted in an increase in the amount of anthocyanins extracted and a decrease in the amount of solvent used. Analysis of variance showed that potato form, ultrasonication time, ultrasonication amplitude and solvent ratio as well as two and three way interactions between some of these factors had a very significant effect (p < 0.000) on the amount of anthocyanins extracted.  相似文献   
107.
The purpose of this paper was to investigate the effect of ultrasound-ionic liquid (IL) pretreatment on the enzymatic and acid hydrolysis of the sugarcane bagasse and wheat straw. The lignocellulosic biomass was dissociated in ILs ([Bmim]Cl and [Bmim]AOC) aided by ultrasound waves. Sonication was performed at different frequencies (20, 28, 35, 40, and 50 kHz), a power of 100 W, a time of 30 min and a temperature of 80 °C. The changes in the structure and crystallinity of the cellulose were studied by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The amounts of the total reducing sugars, glucose, cellobiose, xylose and arabinose in the hydrolysates were determined. The results of FT-IR, XRD and TGA revealed that the structure of cellulose of both biomass samples remained intact after the pretreatment, but the crystallinity decreased. The enzymatic and acid hydrolysis of the biomass samples pretreated with the ultrasound-IL result in higher yields of the reducing sugars compared with the IL-pretreated sample. Enzymatic hydrolysis of bagasse and wheat straw pretreated with [Bmim]Cl-ultrasound resulted in maximal yields of glucose at 20 kHz (40.32% and 53.17%) and acid hydrolysis resulted in maximal yields of glucose at 40 kHz (33.32% and 48.07%). Enzymatic hydrolysis of bagasse and wheat straw pretreated with [Bmim]OAc-ultrasound show maximal yields of glucose at 28 kHz and acid hydrolysis at 50 kHz. Combination of ultrasound with [Bmim]OAc is more effective than [Bmim]Cl in terms of the yields of reducing sugar.  相似文献   
108.
Ultrasound (ULS), sodium hydroxide (NaOH) and combined ultrasound/NaOH pre-treatment were applied to pre-treat waste activated sludge and improve the subsequent anaerobic digestion. Synergistic effect was observed when NaOH treatment was coupled with ultrasound treatment. The highest synergistic Chemical Oxygen Demand (COD) solubilization was observed when 0.02M NaOH was combined with five minutes ultrasonication: an extra 3000 mg/L was achieved on top of the NaOH (1975 mg/L) and ultrasonication (2900 mg/L) treatment alone. Further increase of NaOH dosage increased Soluble Chemical Oxygen Demand (SCOD), but did not increase the synergistic effect. Nine and 18 minutes ultrasonication led to 20% and 24% increase of methane production, respectively; Whereas, 0.05M NaOH pre-treatment did not improve the sludge biodegradability. Combined ultrasound/NaOH (9 min+0.05 M) showed 31% increase of methane production. A stepwise NaOH addition/ultrasound pre-treatment (0.02M+ULS for 5 min+0.02M+ULS for 4 min) was tested and resulted in 40% increase of methane production using 20% less chemicals.  相似文献   
109.
A simple and specific method has been developed for the simultaneous determination of the four major Cinchona alkaloids and their dihydroderivatives and pyridoxine hydrochloride (Vitamin B6) by high-performance liquid chromatography (HPLC) with fluorescence detection (λem=420 nm with λex=330 nm). The chromatographic separation was performed on a Phenomenex Prodigy ODS column (5 μm,  mm i.d.), recommended for basic compounds, under isocratic reversed-phase conditions. The method allowed a good peak shape and an effective resolution of the tested compounds. The extraction of alkaloids from the Cinchona succirubra bark was carried out in mild and fast conditions (ambient temperature, 20 min) by ultrasonication. The procedure showed to be advantageous respect to a reference method, which involved Soxhlet extraction. The results were compared statistically by means of the Student’s t-test and the variance ratio F-test; no significant difference was found. The method was reproducible (relative standard deviations in the range of 1.0-5.0% for the different alkaloids) and gave quantitative recovery of alkaloids added to bark samples (97.8-105%). For additional informations a photoreactor was arranged between the analytical column and the detector and the online post-column photochemical conversion (irradiation=254 nm) was investigated. Vitamin B6 was shown to be highly photosensitive, giving significantly different fluorescence spectra with and without UV irradiation. The proposed method was successfully applied to the quality control of Cinchona bark, liquid extract and cosmetics.  相似文献   
110.
Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items—molar ratio between Fe(CO)5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO)5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号