首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4796篇
  免费   774篇
  国内免费   421篇
化学   1676篇
晶体学   25篇
力学   43篇
综合类   17篇
数学   303篇
物理学   3927篇
  2024年   11篇
  2023年   62篇
  2022年   87篇
  2021年   109篇
  2020年   160篇
  2019年   126篇
  2018年   126篇
  2017年   113篇
  2016年   190篇
  2015年   144篇
  2014年   161篇
  2013年   304篇
  2012年   216篇
  2011年   291篇
  2010年   224篇
  2009年   319篇
  2008年   342篇
  2007年   380篇
  2006年   312篇
  2005年   244篇
  2004年   218篇
  2003年   266篇
  2002年   238篇
  2001年   188篇
  2000年   200篇
  1999年   142篇
  1998年   135篇
  1997年   85篇
  1996年   47篇
  1995年   61篇
  1994年   46篇
  1993年   50篇
  1992年   43篇
  1991年   28篇
  1990年   35篇
  1989年   29篇
  1988年   25篇
  1987年   24篇
  1986年   30篇
  1985年   23篇
  1984年   23篇
  1983年   8篇
  1982年   10篇
  1981年   21篇
  1980年   18篇
  1979年   13篇
  1978年   13篇
  1977年   14篇
  1976年   12篇
  1974年   8篇
排序方式: 共有5991条查询结果,搜索用时 31 毫秒
881.
A protocol to generate atomic singlet state of three atoms is proposed. The strong Rydberg interactions between atoms mediate the multi-qubit operations and help to simplify the dynamics of the system. The effective Hamiltonian is constructed in the regime of Rydberg blockade and the evolution path is built up from an initial state to the target singlet state via the Lie-transform-based pulse design. Numerical simulations show the protocol can produce atomic singlet state with high fidelity and holds robustness against several types of experimental imperfections. Therefore, it may provide some useful results for the generation of singlet states in atomic system.  相似文献   
882.
883.
884.
Catalysis with anion–π interactions is emerging as an important topic in supramolecular chemistry. Among the reactions explored so far on π-acidic surfaces, coumarin synthesis stands out as a cascade process with several coupled anionic transition states. Increasing π-acidity has been shown in a different context to increase transition-state stabilisation and thus catalytic activity. In this report, we explore the possible use of macrocycles to accelerate coumarin synthesis between two π-acidic surfaces. To our disappointment, we found that compared to monomeric π-acids, coumarin synthesis within divalent macrocycles is clearly slower. Hindered access to an overly confined active site within the macrocycles could possibly account for this loss in activity, but several other explanations are certainly possible. However, operational coumarin synthesis on monomeric π-acidic surfaces is shown to tolerate structural modifications. Best results are obtained with structures that aim for proximity without obstructing transition-state stabilisation on the π-acidic surface.  相似文献   
885.
In the usual Su–Schrieffer–Heeger (SSH) chain, the topology of the energy spectrum is divided into two categories in different parameter regions. Here, the topological and nontopological edge states induced by qubit-assisted coupling potentials in circuit quantum electrodynamics (QED) lattice modeled as a SSH chain are studied. It is found that, when the coupling potential added on only one end of the system raises to a certain extent, the strong coupling potential will induce a new topologically nontrivial phase accompanied by the appearance of a nontopological edge state, and the novel phase transition leads to the inversion of odd–even effect directly. Furthermore, the topological phase transitions when two unbalanced coupling potentials are injected into both ends of the circuit QED lattice are studied, and it is found that the system exhibits three distinguishing phases with multiple flips of energy bands. These phases are significantly different from the previous phase induced via unilateral coupling potential due to the existence of a pair of nontopological edge states. The scheme provides a feasible and visible method to induce different topological and nontopological edge states through controlling the qubit-assisted coupling potentials in circuit QED lattice both in experiment and theory.  相似文献   
886.
887.
888.
889.
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号