首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3710篇
  免费   824篇
  国内免费   431篇
化学   1324篇
晶体学   58篇
力学   202篇
综合类   59篇
数学   921篇
物理学   2401篇
  2024年   9篇
  2023年   55篇
  2022年   173篇
  2021年   139篇
  2020年   134篇
  2019年   111篇
  2018年   116篇
  2017年   182篇
  2016年   186篇
  2015年   160篇
  2014年   297篇
  2013年   306篇
  2012年   249篇
  2011年   294篇
  2010年   219篇
  2009年   269篇
  2008年   249篇
  2007年   210篇
  2006年   173篇
  2005年   188篇
  2004年   155篇
  2003年   142篇
  2002年   120篇
  2001年   98篇
  2000年   96篇
  1999年   90篇
  1998年   71篇
  1997年   61篇
  1996年   70篇
  1995年   67篇
  1994年   38篇
  1993年   31篇
  1992年   29篇
  1991年   24篇
  1990年   22篇
  1989年   27篇
  1988年   13篇
  1987年   13篇
  1986年   7篇
  1985年   9篇
  1984年   15篇
  1983年   7篇
  1982年   8篇
  1981年   12篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1974年   1篇
  1959年   1篇
排序方式: 共有4965条查询结果,搜索用时 203 毫秒
161.
将Alq3[tris(8-hydroxyquinoline)aluminium]和Eu(TTA)3phen(TTA=thenoyltrifluoroacetone,phen=1,10-phenanthroline)共掺杂进入主体材料CBP(4,4′-N,N′-dicarbazole-biphenyl)中,我们制作并研究了一系列电致发光器件。经过优化Alq3的掺杂浓度,在不改变色纯度的情况下,器件的效率滚降被大幅降低并获得了近乎加倍的最大亮度。发光层中的Alq3分子不仅促进了电子的注入和传输,还延缓了空穴的传输。借助电致发光光谱,我们证实Alq3分子作为阶梯加速空穴从CBP分子到Eu(TTA)3phen分子的迁移,从而促进了电子和空穴在Eu(TTA)3phen分子上的平衡。因此,我们认为器件的效率滚降受到抑制的原因有两点:一是复合区间的加宽,二是Eu(TTA)3phen分子上空穴和电子的分布更加平衡。  相似文献   
162.
马丽  唐涛 《高分子科学》2014,32(6):731-742
Three-arm and four-arm star-like polybutadienes(PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the azido group terminated PBd-t-N3 and the alkyne-containing multifunctional linking reagent was fast and highly efficient. All coupling reactions were fully accomplished within 40 min at 50 °C in toluene in the presence of the reducing agent Cu(0), proven by 1H-NMR, FTIR and GPC measurements. For the coupling reactions between the PBd-t-N3 polymer and dialkyne-containing compound, the final conversion of the coupled PBd-PBd polymer was ca. 97.0%. When a PBd-t-N3 polymer was reacted with trialkyne-containing or tetraalkyne-containing compound, the conversion of three-arm or four-arm PBd was around 95.5% or 87.0%, respectively. Several factors influencing the coupling efficiency were studied, including the molecular weight of the initial PBd-t-N3, arm numbers and the molar ratio of the azido group to the alkynyl group. The results indicated that the conversion of the target products would be promoted when the molecular weight of the PBd-t-N3 was low and the molar ratio of the azido to alkynyl groups was close to 1.  相似文献   
163.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   
164.
Nonmetal cation (NMC) pentaborate structures were synthesized using the amino acid molecules as cations precursors. Chemical composition analysis, infrared spectroscopy, mass analysis, boron nuclear magnetic resonance, and thermal gravimetric analysis (TGA/DTA) methods were used for structural characterization. The hydrogen storage efficiency of molecules was also determined experimentally. The recorded infrared spectra support the structural similarities of the molecules. Stretchings of pentaborate rings and characteristic peaks of amino acids were detected in infrared spectra. When the thermal analysis curves were recorded, it was found that the structures showed similar decomposition steps. Due to the result of thermal decay, glassy boron oxide (B2O3) formation was observed as the final decomposition products of all molecules. Peaks associated with boric acid, triborate, and pentaborate were observed in the 11B spectra of these salts. Powder X-ray diffraction spectroscopy supports the presence of BO3 and BO4 groups regarding the presence of pentaborate rings. It also indicates the high crystallinity of the structures. The molecular cavities detected by brunauer–emmett–teller analysis were found to be 3.586, 1.922, 1.673, and 1.923 g/cm3. Low-molecular cavities can be attributed to the high hydrogen-bonding capacity of the structures. The hydrogen capture efficiency of the pentaborate salts was found to be in the range of 0.039-0.  相似文献   
165.
Optogenetics is a neuromodulation technology that combines light control technology with genetic technology, thus allowing the selective activation and inhibition of the electrical activity in specific types of neurons with millisecond time resolution. Over the past several years, optogenetics has become a powerful tool for understanding the organization and functions of neural circuits, and it holds great promise to treat neurological disorders. To date, the excitation wavelengths of commonly employed opsins in optogenetics are located in the visible spectrum. This poses a serious limitation for neural activity regulation because the intense absorption and scattering of visible light by tissues lead to the loss of excitation light energy and also cause tissue heating. To regulate the activity of neurons in deep brain regions, it is necessary to implant optical fibers or optoelectronic devices into target brain areas, which however can induce severe tissue damage. Non- or minimally-invasive remote control technologies that can manipulate neural activity have been highly desirable in neuroscience research. Upconversion nanoparticles (UCNPs) can emit light with a short wavelength and high frequency upon excitation by light with a long wavelength and low frequency. Therefore, UCNPs can convert low-frequency near-infrared (NIR) light into high-frequency visible light for the activation of light-sensitive proteins, thus indirectly realizing the NIR optogenetic system. Because NIR light has a large tissue penetration depth, UCNP-mediated optogenetics has attracted significant interest for deep-tissue neuromodulation. However, in UCNP-mediated in vivo optogenetic experiments, as the up-conversion efficiency of UCNPs is low, it is generally necessary to apply high-power NIR light to obtain up-converted fluorescence with energy high enough to activate a photosensitive protein. High-power NIR light can cause thermal damage to tissues, which seriously restricts the applications of UCNPs in optogenetic technology. Therefore, the exploration of strategies to increase the up-conversion efficiency, fluorescence intensity, and biocompatibility of UCNPs is of great significance to their wide applications in optogenetic systems. This review summarizes recent developments and challenges in UCNP-mediated optogenetics for deep-brain neuromodulation. We firstly discuss the correspondence between the parameters of UCNPs and employed opsins in optogenetic experiments, which mainly include excitation wavelengths, emission wavelengths, and luminescent lifetimes. Thereafter, we introduce the methods to enhance the conversion efficiency of UCNPs, including optimizing the structure of UCNPs and modifying the organic dyes in UCNPs. In addition, we also discuss the future opportunities in combining UCNP-mediated optogenetics with flexible microelectrode technology for the long-term detection and regulation of neural activity in the case of minimal injury.  相似文献   
166.
近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、优异的理论功率转换效率(PCE)、环保、多色透明等优点而引起了研究者的关注.Sb2S3因其1.5-2.2 eV的间隙宽度被认为是最有前途的对电极材料之一.此外,Sb2S3是地球中含量丰富的无毒锑矿物的主要成分,还被广泛应用于太阳能转换材料、催化剂、光导探测器等领域.众所周知,石墨烯具有巨大的比表面积、显著的载流子迁移率和优异的热/化学稳定性,这使得提高电子转移效率和电催化活性成为可能.首先,采用改进的Hummers方法制备了氧化石墨烯纳米片;然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构;在pH值为6时,样品为不规则球体;当pH值为8时,纳米片结构开始出现;但当p H=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当p H值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72 m^2g^-1,平均孔径为31.08nm,Sb2S3@RGO的分别为44.53 m^2g^-1和22.65 nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).  相似文献   
167.
苝二酰亚胺类小分子由于其固有的强分子聚集特性,导致活性层形貌难于调控,器件效率相对于近年来报道的受体-给体-受体型稠环小分子受体一直处于劣势.针对这一关键问题,我们设计并合成了三个以吡咯并吡咯二酮为中心核的双臂型和四臂型苝二酰亚胺类小分子受体.其中,c-PDI2nc-PDI2两个双臂型分子分别将两个苝二酰亚胺臂置于吡咯并吡咯二酮核心骨架的碳取代位和氮取代位;四臂型PDI4是将四个苝二酰亚胺臂置于吡咯并吡咯二酮核心骨架的四个取代位.通过对三个受体小分子的光谱吸收、能级水平、薄膜形貌以及光伏性能的详细研究,发现三个受体小分子都拥有扭曲的分子结构并由此带来无定形薄膜形貌,表明其分子聚集趋势得到了有效的抑制.相对于双臂型受体分子,四臂型PDI4具有更强的光吸收能力和电子传输性能,从而获得了8.45%的最高光电转换效率,是c-PDI2器件效率的2倍和nc-PDI2器件效率的1.5倍.  相似文献   
168.
《中国化学快报》2020,31(12):3015-3026
Multifunctional bismuth sulfide (Bi2S3) nanomaterials exhibit significant potential as nanomedicines for the diagnosis and treatment of cancer. These nanomaterials act as excellent photothermal agents and radiation sensitizers for the treatment of tumors, and they can also act as contrast agents for computed tomography (CT) imaging, photoacoustic imaging (PA), and other forms of imaging to provide real-time tumor monitoring and testing guidance. Compared with other nanomaterials, Bi2S3 nanomaterials can readily adapt to different applications by virtue of the fact that they can be easily functionalized. However, these nanomaterials have some limitations that cannot be ignored and need to be addressed, such as poor biocompatibility, toxicity, and low chemical stability. It is widely believed that appropriate functionalization of Bi2S3 nanomaterials could remedy such defects and significantly improve performance. This review summarizes the ways in which Bi2S3 nanomaterials can be functionalized and discusses their applications in cancer theranostics over the last few years, focusing particularly on imaging and therapy. We also discuss issues relating to how Bi2S3 nanomaterials can be analyzed, including how we might be able to use these systems to inhibit and treat tumors and how current limitations might be overcome to improve treatment efficacy. Finally, we hope to provide inspiration and guidance as to how we might create a more optimized multifunctional nano-system for the diagnosis and treatment of tumors.  相似文献   
169.
The synchronization of diagnosis and treatment is a new trend in cancer treatment. Photoacoustic imaging (PAI) and photothermal therapy (PTT) are recognized as one of the perfect combinations. The autocatalytic polymerization of selenium/polypyrrole (Se@PPy) nanocomposites with a wide-absorption band at near-infrared region (NIR, 800 nm) has been developed in this paper. The wide optical absorption characteristics enable Se@PPy nanocomposites to achieve multi-spectral PAI. Ex vivo experiments show desirable photoacoustic ability of the Se@PPy nanocomposites at wavelengths ranging from 700 nm to 900 nm, which is better than that of commercial indocyanine green (ICG). Se@PPy nanocomposites have high photothermal conversion efficiency up to 36.3% as well as excellent photo-thermal stability. In vitro cytotoxicity test demonstrates that the Se@PPy nanocomposites have good bio-safety. Furthermore, the feasibility of Se@PPy nanocomposites for enhancing multi-spectral PAI guided PTT was verified on 4T1 tumor-bearing nude mice. Our results indicate that Se@PPy nanocomposites could be used as an effective theranostic agent for near-infrared light-mediated PAI and PTT of tumor.  相似文献   
170.
Aqueous zinc‐ion batteries have rapidly developed recently as promising energy storage devices in large‐scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite‐free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host–zinc interface and the zinc–electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite‐free zinc anodes employed in aqueous zinc‐ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号