首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
  国内免费   2篇
化学   8篇
力学   40篇
综合类   1篇
数学   5篇
物理学   14篇
  2021年   2篇
  2020年   11篇
  2019年   2篇
  2017年   2篇
  2016年   11篇
  2015年   6篇
  2014年   4篇
  2013年   3篇
  2011年   5篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  1999年   2篇
  1996年   2篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
31.
Nanocomposite vulcunizates based on a SBR/ENR50 (50/50%wt) rubber blend containing nanoclay (5 or 10 phr) with and without carbon black (CB 20 phr) were prepared by melt blending in an internal mixer. The compound containing 35 phr carbon black (only) was prepared as a reference sample. Microstructure of nanocomposite samples was investigated by using X-ray diffraction (XRD), melt rheo-mechanical spectroscopy (RMS), and scanning electron microscopy (SEM). The XRD patterns revealed that the distance between the clay layers were increased by adding CB to the nanocomposite samples; they caused better diffusion of chains between the layers and resulted in an intercalated structure. The RMS results also indicated the formation of the filler-filler networks. SEM images of fracture surfaces showed the presence of much roughness in the samples containing both nanoclay and CB compared to the other samples. The results obtained from application of the Flory–Rhener equation showed a high crosslink density for the sample with 10 phr nanoclay and 20 phr CB. Dynamic mechanical behavior, mechanical properties, and abrasion resistance of the nanocomposites were evaluated. The results indicated that the sample containing 10 phr nanoclay and 20 phr CB had an increased dynamic elastic modulus, reduced maximum loss factor (tanδ)max,, and an improved tensile strength and abrasion resistance compared to the reference sample. Also, this sample showed the lowest maximum loss factor, at 50–60°C, so it can be a candidate for tire-tread application.  相似文献   
32.
Performing numerous analyses of tire/road noise measurements on low-noise pavements during the last several years, the authors observed significant inhomogeneity of the wearing course in numerous cases, while similar problems were almost non-existent when dense pavements were measured.  相似文献   
33.
Tire Compaction Capacity rating system with its CC index was evolved to support the choice of proper tires for off-road vehicles or machines operating on crop producing land with aim to prevent harmful compaction of the ground. This system, fundamentally presented in the Journal of Terramechanics, Vol. 52/2014, is based on a great number of laboratory compaction tests in common clay–loam soil (here marked as standard soil). The presented article deals especially with more accurate application of numerical rating to sandy and clay soils (very different grain size) under the designation equivalent Compaction Capacity (eCC) index, however, is applicable to an arbitrary soil type. The features and practical use of eCC rating are explained and discussed in this technical note.  相似文献   
34.
Tire tractive performance, soil behavior under the traffic, and multi-pass effect are among the key topics in the research of vehicle off-road dynamics. As an extension of the study (He et al., 2019a), this paper documents the testing of a tire moving on soft soil in the traction mode or towing mode, with a single pass or multiple passes, and presents the testing results mainly from the aspects of tire tractive performance parameters, soil behavior parameters, and multi-pass effect on these parameters. The influence of tire inflation pressure, initial soil compaction, tire normal load, or the number of passes on the test data has been analyzed; for some of the tests, the analysis was completed statistically. A multi-pass effect phenomenon, different from any phenomenon recorded in the available existing literature, was discovered and related to the ripple formation and soil failure. The research results of this paper can be considered groundwork for tire off-road dynamics and the development of traction controllers for vehicles on soft soil.  相似文献   
35.
采用4种含不同官能基团修饰剂改性的二氧化硅SiO2增强溶聚丁苯橡胶(SSBR)/顺丁橡胶(BR)共混体系, 制备了SSBR/BR/SiO2橡胶纳米复合材料, 研究了其结构与性能. 结果表明, 在混炼胶体系中, 与未改性SiO2填充的SSBR/BR相比, 改性SiO2填充的SSBR/BR门尼黏度及结合橡胶含量显著增大, 表明填料-橡胶相互作用显著提高; 硫化焦烧时间缩短60%, 硫化速度增大了35%~40%. 在硫化胶体系中改性SiO2填充的SSBR/BR具有更大的交联密度, 填料分散性明显改善, 同时也表现出更为优异的物理机械性能, 100%和300%定伸模量提高47%以上, 旋转滚筒式磨耗机法(DIN)磨耗降低5%~12%, 生热降低了约7%~13%, 热空气老化性能提升4%~22%, 代表滚动阻力的tanδ在60 ℃降低8%~13%. 此外, 与SSBR/BR/1165MP硫化胶相比, 用90 mmol/kg氨基改性SiO2填充的SSBR/BR硫化胶的抗湿滑性能提高6.9%, 表现出最优的综合性能. 填料的良好分散及填料与聚合物的相互作用增强对于提高SSBR/BR/SiO2胎面胶综合力学性能具有重要意义.  相似文献   
36.
Off-road operations are critical in many fields and the complexity of the tire-terrain interaction deeply affects vehicle performance. In this paper, a semi-empirical off-road tire model is discussed. The efforts of several researchers are brought together into a single model able to predict the main features of a tire operating in off-road scenarios by computing drawbar pull, driving torque, lateral force, slip-sinkage phenomenon and the multi-pass behavior. The approach is principally based on works by Wong, Reece, Chan, and Sandu and it is extended in order to catch into a single model the fundamental features of a tire running on soft soil. A thorough discussion of the methodology is conducted in order to highlight strengths and weakness of different implementations. The study considers rigid wheels and flexible tires and analyzes the longitudinal and the lateral dynamics. Being computationally inexpensive a semi-empirical model is attractive for real time vehicle dynamics simulations. To the best knowledge of the authors, current vehicle dynamics codes poorly account for off-road operations where tire-terrain interaction dominates vehicle performance. In this paper two soils are considered: a loose sandy terrain and a firmer loam. Results show that the model realistically predicts longitudinal and lateral forces providing at the same time good estimates of the slip-sinkage behavior and tire parameters sensitivity.  相似文献   
37.
Significant challenges exist in the prediction of interaction forces generated from the interface between pneumatic tires and snow-covered terrains due to the highly non-linear nature of the properties of flexible tires, deformable snow cover and the contact mechanics at the interface of tire and snow. Operational conditions of tire-snow interaction are affected by many factors, especially interfacial slips, including longitudinal slip during braking or driving, lateral slip (slip angle) due to turning, and combined slip (longitudinal and lateral slips) due to brake-and-turn and drive-and-turn maneuvers, normal load applied on the wheel, friction coefficient at the interface and snow depth. This paper presents comprehensive three-dimensional finite element simulations of tire-snow interaction for low-strength snow under the full-range of controlled longitudinal and lateral slips for three vertical loads to gain significant mechanistic insight. The pneumatic tire was modeled using elastic, viscoelastic and hyperelastic material models; the snow was modeled using the modified Drucker-Prager Cap material model (MDPC). The traction, motion resistance, drawbar pull, tire sinkage, tire deflection, snow density, contact pressure and contact shear stresses were obtained as a function of longitudinal slip and lateral slip. Wheel states - braked, towed, driven, self-propelled, and driving - have been identified and serve as key classifiers of discernable patterns in tire-snow interaction such as zones of contact shear stresses. The predicted results can be applied to analytical deterministic and stochastic modeling of tire-snow interaction.  相似文献   
38.
The properties of (50/50?wt%) styrene butadiene rubber/epoxidized (50%) natural rubber (SBR/ENR50) blends containing nanoclay (NC, 5 or 10phr) without and with carbon black (CB 20phr) cured by sulfur or by electron beam (EB) irradiation (50 and 100kGy), were compared. A sulfur cured compound containing 35phr CB was prepared as a reference sample. Dynamic mechanical thermal analysis (DMTA) indicated that the sulfur cured sample containing 10phr NC and 20phr CB and the 100kGy irradiated sample with 5phr NC and 20phr CB had higher crosslink density, storage modulus, and tensile strength, and less loss factor and loss modulus, compared to the reference sample. Scanning electron microscopy (SEM) images of cryo- fractured surfaces confirmed the DMA and crosslink density results. We suggest a light weight 100kGy irradiated sample containing the lowest amount of NC and 20phr CB with a uniform distribution of the –C–C– bonds crosslinks, for high thermal stability applications and also for passenger cars tire treads, for its ice grip and wet skid properties especially for icy and wet roads, with improvements of 23% and 20%, respectively as compared to the reference sample.  相似文献   
39.
Vertical wheel load and tire pressure are both easily managed parameters which play a significant role in tillage operations for limiting slip which involves energy loss. This aspect to a great extent affects the fuel consumption and the time required for soil tillage. The main focus of this experiment was to determine the effect on the wheels’ slip, the fuel consumption and the field performance of a tractor running in a single-wheel 4WD driving system and in a dual-wheel 2WD driving system, due to the variations in air pressure of the tires as well as in the ballast mass. With no additional mass, the lowest fuel consumption was reached by a tractor with the least air pressure in the tires and running in a dual-wheel 2WD driving system. It was determined that for a stubble cultivation with a medium-power (82.3 kW) tractor running in a dual-wheel 2WD driving system, the hourly fuel consumption was by 1.15 L h−1 (or 7.3%), the fuel consumption per hectare by 0.35 L ha−1 (or 7.9%) and the field performance by 0.05 ha h−1 (or 1.25%) lower compared to a single-wheel 4WD driving system, when driving wheels’ slip for both modes was the same, i.e., at 8–12%.  相似文献   
40.
The effects of vehicles and pavement surface types on noise have been investigated at the Korea Highway Corporation’s Test Road along the southbound side of the Jungbu Inland Expressway, South Korea. The study was conducted in 2005 and 2006 through field measurements at nine surface sections of asphalt concrete and Portland cement concrete pavements using eleven vehicles. For the road noise analysis, the sound power levels (PWLs) of combined noise (e.g., tire/pavement interaction noise and power-train noise together) and tire/pavement interaction noise using various vehicles were calculated based on the novel close proximity (NCPX) and pass-by methods. Then, the characteristics of the PWLs were evaluated according to surface type, vehicle type, and vehicle speed. The results show that the PWLs of vehicles are diversely affected by vehicle speed and the condition of the road surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号