首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   39篇
  国内免费   7篇
化学   60篇
晶体学   1篇
力学   127篇
综合类   2篇
数学   129篇
物理学   188篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   9篇
  2020年   16篇
  2019年   14篇
  2018年   12篇
  2017年   12篇
  2016年   24篇
  2015年   10篇
  2014年   25篇
  2013年   49篇
  2012年   19篇
  2011年   31篇
  2010年   19篇
  2009年   26篇
  2008年   34篇
  2007年   20篇
  2006年   32篇
  2005年   24篇
  2004年   24篇
  2003年   8篇
  2002年   10篇
  2001年   10篇
  2000年   11篇
  1999年   3篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1986年   1篇
  1977年   1篇
  1969年   1篇
排序方式: 共有507条查询结果,搜索用时 31 毫秒
31.
The aim of this study is to develop a model for the determination of the superficial velocities in horizontal and slightly inclined oil–water pipe flow conditions by using pressure gradient and mixture density information. In this article an inverse model is suggested for a dispersion of oil in water and of water in oil. This approach permits to select dispersed flow conditions from a set of experimental data, and uses a new hybrid model for the effective viscosity. A set of 310 oil–water experimental data points collected on an experimental set-up of length L = 15 m and diameter D = 8.28 cm at various (slight) orientations is used to validate the inverse method. The comparison between model reconstructions and measured flow velocities show a reasonable agreement.  相似文献   
32.
To utilize the advantageous properties of two-phase flow in microgravity applications, the knowledge base of two-phase flow phenomena must be extended to include the effects of gravity. In the experiment described, data regarding the behavior of two-phase flow in a conduit under microgravity conditions (essentially zero gravity) are explored. Of particular interest, knowledge of the void fraction of the gas and liquid in a conduit is necessary to develop models for heat and mass transfer, pressure drop, and wall shear. An experiment was conducted under reduced gravity conditions to collect data by means of a capacitance void fraction sensor and high speed visual imagery. Independent parameters were varied to map the flow regime regions. These independent parameters include gas and liquid volumetric flow rates and saturation pressures. Void fraction measurements were taken at a rate of 100 Hz with six sensors at two locations along the conduit. Further, statistical parameters were developed from the void fraction measurements. Statistical parameters such as variance, signal-to-noise ratio, half height value, and linear area difference were calculated and found to have characteristics allowing flow regime identification.  相似文献   
33.
Experimental data and correlations available in the literature for the liquid holdup εL and the pressure gradient ΔPTP/L for gas-liquid pipe flow, generally, do not cover the domain 0 < εL < 0.06. Reliable pressure-drop correlations for this holdup range are important for calculating flow rates of natural gas, containing traces of condensate. In the present paper attention is focused on reliable measurements of εL and ΔPTPIL values and on the development of a phenomenological model for the liquid-holdup range 0 < εL < 0.06. This model is called the “apparent rough surface” model and is referred to as the ARS model. The experimental results presented in this paper refer to air-water and air-water + ethyleneglycol systems with varying transport properties in horizontal straight smooth glass tubes under steady-state conditions. The holdup and pressure gradient values predicted with the ARS model agree satisfactorily with both our experimental results and data obtained from the literature referring to small liquid-holdup values 0 < εL < 0.06. Further, it has been shown that in the domain 38 < < 72 mPa m the interfacial tension of the gas-liquid system has no significant effect on the liquid holdup. The pressure gradient, however, increases slightly with decreasing surface tension values.  相似文献   
34.
A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed. The project supported by the National Natural Science Foundation of China (10472126) and the Knowledge Innovation Program of Chinese Academy of Sciences. The English text was polished by Keren Wang  相似文献   
35.
Recently, we found that a new form of coupled instability, named ThermoElastic Dynamic Instability (TEDI), can occur by interaction between frictional heating and the natural dynamic modes of sliding bodies. This is distinct from the classical dynamic instabilities (DI) which is produced by an interaction between the frictional forces at the sliding interface and the natural modes of vibration of the bodies if the friction coefficient is sufficiently high, and also from ThermoElastic Instability (TEI), which is due to the interaction of frictional heating and thermal expansion, leading for example to low pitched brake noise above some critical speed. This result was relative to an highly idealized system, comprising an elastic layer sliding over a rigid plane including both dynamic and thermoelastic effects, but neglecting shear waves at the interface due to frictional tractions (from which the denomination “frictionless TEDI”). We demonstrate here that including these shear waves destabilizes both the shear and dilatational vibration modes of the system at arbitrarily small friction coefficients and speeds, where DI and TEI are predicted to be stable. A detailed study of the new modes and transient simulations show that for low pressures and high speed, the system tends towards the results of the previous model (“frictionless TEDI”), i.e. the tendency to a state in which the layer bounces over the plane, with alternating periods of sliding contact and separation. In the case of low speeds and high pressures, viceversa, the system is dominated by the modes near the resonance of the shear and dilatational modes, with a resulting complex behaviour, but generally leading to stick-slip regimes, reducing the jumping mode of “frictionless TEDI”, because stick reduces or stops frictional heating production.  相似文献   
36.
This study deals with an investigation on the preparation and physicochemical interactions of ZnO nanoparticles with acid functionalized porphyrin [5‐mono‐(4‐carboxyphenyl)‐10,15,20‐triphenylporphyrin (CPTPP)] for photovoltaic applications in a detailed manner. Zinc acetate and sodium hydroxide were used as the starting materials for the synthesis of ZnO nanoparticles at 60 °C in an alcoholic medium. The freshly prepared fine particles were then functionalized with CPTPP. Both the virgin and pregnant ZnO particles were characterized by using UV‐Visible spectrophotometry (UV), fluorescence emission (PL), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The band gap energy obtained for ZnO particles, having a value of 3.47 eV, shows significant quantum confinement effect and enhanced photophysical activity. FTIR analysis of the doped ZnO nanostructures showed the presences of some chemical species. SEM analysis revealed a clear change in the surface morphologies of undoped ZnO. The average crystallite size of nanoparticles, calculated from XRD peaks, was found in the nano regime. The lattice parameters calculated for ZnO nanocrystals were also found in good agreement with those given in the literature. From the enhancement in the red shift of the UV‐Vis spectra, it is concluded that hybridization of acid functionalized porphyrin can cause a significant expansion in the total absorption region of ZnO semiconductor for photovoltaic applications.  相似文献   
37.
A very promising recent trend in applied quantum physics is to combine the advantageous features of different quantum systems into what is called “hybrid quantum technology”. One of the key elements in this new field will have to be a quantum memory enabling to store quanta over extended periods of time. Systems that may fulfill the demands of such applications are comb‐shaped spin ensembles coupled to a cavity. Due to the decoherence induced by the inhomogeneous ensemble broadening, the storage time of these quantum memories is, however, still rather limited. Here we demonstrate how to overcome this problem by burning well‐placed holes into the spectral spin density leading to spectacular performance in the multimode regime. Specifically, we show how an initial excitation of the ensemble leads to the emission of more than a hundred well‐separated photon pulses with a decay rate significantly below the fundamental limit of the recently proposed “cavity protection effect”.

  相似文献   

38.
A regime diagram of the development of slow near-wall disturbances induced by an unsteady self-induced pressure perturbation in a hypersonic boundary layer is constructed for a disturbance wavelength greater than the boundary layer thickness. It is shown that the main factors shaping the perturbed flow are the gas enthalpy near the body surface, the intensity of the viscous-inviscid interaction, and the nature (sub- or supersonic) of the main part of the boundary layer. Nonlinear boundary-value problems are formulated for regimes in which the near-wall boundary layer region plays a decisive role. Numerical and analytical solutions are obtained in the linear approximation. It is shown that intensification of the viscous-inviscid interaction or an increase in the role of the supersonic main region of the boundary layer impart generally supersonic properties to the main part of the boundary layer, i.e. the upstream propagation of the disturbances is damped and the disturbance growth downstream becomes more intense. Damping of the viscous-inviscid interaction and an increase in the role of the subsonic main part of the boundary layer have the opposite effect. Surface cooling increases the effect of the main part of the boundary layer on the formation of pressure disturbances and surface heating leads to an increase in the effect of the near-wall boundary layer region. It is also shown that for the regimes considered disturbances propagate in a direction opposite to that of the free stream from the turbulent flow region located downstream of the local disturbance development region.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 59–71. Original Russian Text Copyright © 2004 by Bogolepov and Neiland.  相似文献   
39.
The behavior of an inclusion (drop) of foreign fluid in a porous medium saturated with another fluid is considered. A steady-state regime of gravity-induced drop settlement is found and the instability of this regime is demonstrated. The horizontal motion of a liquid inclusion under the action of a stationary reservoir pressure gradient is also studied.  相似文献   
40.
Using the method of matched asymptotic expansions, an analytical solution of the balance equation for turbulence energy is constructed for a shallow basin (sea) in which the fluid depth does not exceed the Stokes layer thickness. In this case, a gradient-viscous balance is established with the turbulent viscosity being balanced mainly by the pressure gradient. It is shown that nonlinear boundary layers attributable to turbulence energy diffusion are formed near the bottom and the free surface (or ice). In the neighborhood of the point of maximum flow velocity (if this maximum is attained inside the flow), a nonlinear internal boundary layer also develops. Outside these layers, the turbulence energy generation is in the first approximation balanced by the energy dissipation. Asymptotic solutions for the boundary layers are constructed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号