首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   11篇
  国内免费   19篇
化学   100篇
力学   201篇
综合类   1篇
数学   106篇
物理学   223篇
  2024年   4篇
  2023年   25篇
  2022年   10篇
  2021年   5篇
  2020年   16篇
  2019年   16篇
  2018年   7篇
  2017年   15篇
  2016年   9篇
  2015年   16篇
  2014年   22篇
  2013年   42篇
  2012年   27篇
  2011年   47篇
  2010年   27篇
  2009年   46篇
  2008年   32篇
  2007年   46篇
  2006年   26篇
  2005年   35篇
  2004年   11篇
  2003年   16篇
  2002年   16篇
  2001年   9篇
  2000年   17篇
  1999年   9篇
  1998年   7篇
  1997年   8篇
  1996年   10篇
  1995年   7篇
  1994年   6篇
  1993年   11篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
31.
Using a model that with or without considering the interaction between bubbles through the radiated pressure waves, numerical simulations of cavitation bubbles have been performed in order to study the effect of the bubble–bubble interaction on radial pulsations of bubbles. Comparing the results obtained by with or without considering the bubble–bubble interaction, it is suggested that the suppression or enlargement property of expansion ratios of bubbles due to the bubble–bubble interaction largely depends on the ultrasound parameters, the ambient bubble radii, the distances between bubbles and the number of bubbles (in multi-bubble environment, the last two aspects can be expressed using the coupling strength). The frequency response curve of expansion ratio decreases and shifts to left due to the bubble–bubble interaction and the larger the coupling strength is, the more the left-shifting is.  相似文献   
32.
    
A high-temperature turbulent jet in a cold crossflow is investigated with the help of two scale-resolving simulation approaches. This work aims at improving the methodologies used to predict the thermal footprint of exhaust gases issuing from helicopter engines onto the fuselage. Specific attention is brought to the capability of scale resolving simulations to correctly reproduce flow dynamics and turbulent mixing. Mean flow features, turbulent quantities and temperature fields are compared and validated against wind tunnel test measurements. In addition, the present work highlights the importance of synthetic turbulence injection at pipe inlet to obtain a fair prediction of both flow dynamics and temperature field.  相似文献   
33.
Rotational profiles of the 228Cd2 isotopomer recorded in the (υ′, υ″) = (26, 0), (27, 0), (42, 0), (45, 0), (46, 0), (48, 0) vibrational bands of the transition were analysed. As a result, the , , , , and excited- as well as the ground-state rotational constants of the (114Cd)2 were determined. The analysis allowed determining the absolute values for the and excited- and ground-state bond lengths, respectively. The obtained result – the – distinctly shorter than that obtained with assumption of pure ground-state van der Waals bonding, supports a theoretical prediction of a covalent admixture to the bonding. Analysis of the partially-resolved rotational profile recorded in the (υ′, υ″) = (38, 0) band of the same isotopomer recorded at the transition allowed estimating the rotational constant in the B1u state.  相似文献   
34.
The characteristic of surface arc plasma included millisecond and microsecond actuation in supersonic flow is investigated both experimentally and numerically. In the experiment, the discharge characteristic of surface arc plasma in quiescent air and supersonic flow is recorded. The stable oblique shock could be observed with millisecond actuation. And the unstable compressive wave could be also observed with microsecond actuation. In the numerical investigation, plasma actuation is defined as a source term with input power density from discharge VI characteristic, which is expected to better describe the influence of heating process. The numerical results are coincident with experimental results. In order to confirm the capability of surface arc plasma actuation to control supersonic flow, experimental investigations on control shock induced by ramp and separation of boundary layer induced by impinging shock are performed. All the results demonstrate the control effect of surface arc plasma actuation onto supersonic flow.  相似文献   
35.

Objectives

A patient with a breast tissue expander may require a diagnostic assessment using magnetic resonance imaging (MRI). To ensure patient safety, this type of implant must undergo in vitro MRI testing using proper techniques. Therefore, this investigation evaluated MRI issues (i.e., magnetic field interactions, heating, and artifacts) at 3-Tesla for a breast tissue expander with a remote port.

Methods

A breast tissue expander with a remote port (Integra Breast Tissue Expander, Model 3612-06 with Standard Remote Port, PMT Corporation, Chanhassen, MN) underwent evaluation for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts using standardized techniques. Heating was evaluated by placing the implant in a gelled-saline-filled phantom and MRI was performed using a transmit/receive RF body coil at an MR system reported, whole body averaged specific absorption rate of 2.9-W/kg. Artifacts were characterized using T1-weighted and GRE pulse sequences.

Results

Magnetic field interactions were not substantial and, thus, will not pose a hazard to a patient in a 3-Tesla or less MRI environment. The highest temperature rise was 1.7 °C, which is physiologically inconsequential. Artifacts were large in relation to the remote port and metal connector of the implant but will only present problems if the MR imaging area of interest is where these components are located.

Conclusions

A patient with this breast tissue expander with a remote port may safely undergo MRI at 3-Tesla or less under the conditions used for this investigation. These findings are the first reported at 3-Tesla for a tissue expander.  相似文献   
36.

Aims

The objective of this study was to evaluate the potential of 4D flow MRI to assess valve effective orifice area (EOA) in patients with aortic stenosis as determined by the jet shear layer detection (JSLD) method.

Methods and Results

An in-vitro stenosis phantom was used for validation and in-vivo imaging was performed in 10 healthy controls and 40 patients with aortic stenosis. EOA was calculated by the JSLD method using standard 2D phase contrast MRI (PC-MRI) and 4D flow MRI measurements (EOAJSLD-2D and EOAJSLD-4D, respectively). As a reference standard, the continuity equation was used to calculate EOA (EOACE) with the 2D PC-MRI velocity field and compared to the EOAJSLD measurements. The in-vitro results exhibited excellent agreement between flow theory (EOA = 0.78 cm2) and experimental measurement (EOAJSLD-4D = 0.78 ± 0.01 cm2) for peak velocities ranging from 0.9 to 3.7 m/s. In-vivo results showed good correlation and agreement between EOAJSLD-2D and EOACE (r = 0.91, p < 0.001; bias: − 0.01 ± 0.38 cm2; agreement limits: 0.75 to − 0.77 cm2), and between EOAJSLD-4D and EOACE (r = 0.95, p < 0.001; bias: − 0.09 ± 0.26 cm2; limits: 0.43 to − 0.62 cm2).

Conclusion

This study demonstrates the feasibility of measuring EOAJSLD using 4D flow MRI. The technique allows for optimization of the EOA measurement position by visualizing the 3D vena contracta, and avoids potential sources of EOACE measurement variability.  相似文献   
37.
38.
This paper reports on etching rates and hole quality for nanosecond laser percussion drilling of 200-μm thick 316L stainless steel performed with micro supersonic gas jets. The assist-gas jets were produced using nozzles of 200, 300 and 500 μm nominal throat diameters. Air and oxygen were used separately for the process gas in the drilling trials and the drilling performance was compared to drilling in ambient conditions. The highest etch rate of 1.2 μm per pulse was obtained in the ambient atmosphere condition, but this was reduced by about 50% with assist-air jets from the 200 μm nozzle. Increasing the jet diameter and/or using oxygen assist gas also decreased the etching rate and increased the hole diameter. The 200 μm nozzle using air-assist jets produced the least amount of recast and gave the best compromise for etching rate. A combination of plasma shielding and different gas dynamic conditions inside the holes and at the surface are correlated to the observations of different drilling rates and hole characteristics.  相似文献   
39.
The effects of NO and NO2 produced by using a plasma jet (PJ) of a N2/O2 mixture on ignition of hydrogen, methane, and ethylene in a supersonic airflow were experimentally and numerically investigated. Numerical analysis of ignition delay time showed that the addition of a small amount of NO or NO2 drastically reduced ignition delay times of hydrogen and hydrocarbon fuels at a relatively low initial temperature. In particular, NO and NO2 were more effective than O radicals for ignition of a CH4/air mixture at 1200 K or lower. These ignition enhancement effects were examined by including the low temperature chemistry. Ignition tests by a N2/O2 PJ in a supersonic flow (M = 1.7) for using hydrogen, methane, and ethylene injected downstream of the PJ were conducted. The results showed that the ignitability of the N2/O2 PJ is affected by the composition of the feedstock and that pure O2 is not the optimum condition for downstream fuel injection. This result of ignition tests with downstream fuel injection demonstrated a significant difference in ignition characteristics of the PJ from the ignition tests with upstream fuel injection.  相似文献   
40.
Temporal sequences of planar laser-induced fluorescence (PLIF) images of several high-speed, transient flowfields created in a reflection-type shock tunnel facility were acquired. In each case, the test gas contained either nitric oxide or the hydroxyl radical, the fluorescent species. The processes of shock reflection from an endwall with a converging nozzle and of underexpanded free jet formation were examined. A comparison was also made between PLIF imaging and shadow photography. The investigation demonstrated some of the capabilities of PLIF imaging diagnostics in complex, transient, hypersonic flowfields, including those with combustion.Nomenclature A spontaneous emission rate - A las cross sectional area of laser sheet - B laser absorption rate - C opt constant dependent on optical arrangement, collection efficiency, etc. - D nozzle throat diameter - E p laser pulse energy - f J Boltzmann fraction of absorbing state - g spectral convolution of laser and absorption lineshapes - k Boltzmann constant - M s incident shock Mach number - N noise, root-mean-square signal fluctuation - P static pressure - P 1 initial pressure of test gas in shock tube - P a free jet ambient pressure - P s stagnation pressure - Q electronic quenching rate of excited state - S PLIF signal - t time between shock reflection and image acquisition - T static temperature - T s stagnation temperature - a mole fraction of absorbing species  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号