全文获取类型
收费全文 | 24679篇 |
免费 | 3310篇 |
国内免费 | 2079篇 |
专业分类
化学 | 15672篇 |
晶体学 | 567篇 |
力学 | 1099篇 |
综合类 | 172篇 |
数学 | 912篇 |
物理学 | 11646篇 |
出版年
2024年 | 38篇 |
2023年 | 207篇 |
2022年 | 451篇 |
2021年 | 481篇 |
2020年 | 670篇 |
2019年 | 667篇 |
2018年 | 661篇 |
2017年 | 786篇 |
2016年 | 1033篇 |
2015年 | 970篇 |
2014年 | 1048篇 |
2013年 | 2471篇 |
2012年 | 1392篇 |
2011年 | 1535篇 |
2010年 | 1213篇 |
2009年 | 1332篇 |
2008年 | 1422篇 |
2007年 | 1432篇 |
2006年 | 1369篇 |
2005年 | 1170篇 |
2004年 | 1138篇 |
2003年 | 1003篇 |
2002年 | 1164篇 |
2001年 | 801篇 |
2000年 | 844篇 |
1999年 | 699篇 |
1998年 | 620篇 |
1997年 | 464篇 |
1996年 | 403篇 |
1995年 | 420篇 |
1994年 | 313篇 |
1993年 | 282篇 |
1992年 | 258篇 |
1991年 | 174篇 |
1990年 | 165篇 |
1989年 | 127篇 |
1988年 | 130篇 |
1987年 | 114篇 |
1986年 | 108篇 |
1985年 | 91篇 |
1984年 | 86篇 |
1983年 | 42篇 |
1982年 | 67篇 |
1981年 | 36篇 |
1980年 | 40篇 |
1979年 | 48篇 |
1978年 | 16篇 |
1977年 | 12篇 |
1976年 | 10篇 |
1973年 | 19篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Qipeng Guo Fei Chen Ke Wang Ling Chen 《Journal of Polymer Science.Polymer Physics》2006,44(21):3042-3052
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006 相似文献
2.
Xinjiang Chen Goh Matsuo Bunsho Ohtani Kaoru Tsujii 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4891-4900
A racemic amphiphilic monomer, n‐dodecyl glyceryl itaconate (DGI), forms bilayer membranes in water in the presence of small amount of ionic cosurfactant and shows iridescent color. A chiral DGI, S‐DGI, also shows an iridescent property, but with a rather red shift in the color, which can be ascribed to the increased packing density of the monomer in the bilayer membranes. Chrial DGI has a more compact packing density than racemic one owing to closer distance between the monomer molecules; the conversion rate, however, is slower than that of racemic one when H2O2 is used as an initiator. When the initiator is changed to an amphiphilic one, 4‐(2‐hydroxyethoxy) phenyl‐(2‐hydroxy‐2‐propyl) ketone (Irgacure 2959), the chiral DGI shows even a little faster conversion rate than that of racemic one. The NMR chemical shift results of protons in benzene ring show that the molecules of Irgacure 2959 insert into the bilayer membranes. The molecular weights of the corresponding polymers prove that the initiation by H2O2 is restricted compared to that by Irgacure 2959. It is concluded that the decelerated polymerization behavior of chiral DGI initiated by H2O2 is a result of limited diffusion of the initiator into the lamellar bilayer structures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4891–4900, 2007 相似文献
3.
Ana Luísa Daniel‐da‐Silva João Carlos Moura Bordado José Miguel Martín‐Martínez 《Journal of Polymer Science.Polymer Physics》2007,45(22):3034-3045
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007 相似文献
4.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007 相似文献
5.
K. Y. Sandhya C. K. S. Pillai K. Sree Kumar 《Journal of Polymer Science.Polymer Physics》2004,42(7):1289-1298
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004 相似文献
6.
Atomic force microscopy (AFM) has been used to visualize the plastic deformation mechanisms that are responsible for the yielding of semicrystalline polymers of low degree of crystallinity (<50%). Indeed, AFM, if operated in suitable conditions, is able to image both the amorphous and the crystalline phases. Polyamide 6 films have been drawn at temperatures T < 160 °C. Postmortem AFM observations show that, at yield, shear bands nucleate and propagate in the amorphous phase. They cross the crystalline lamellae and run over the whole surface of the sample. By crossing the lamellae, they form nanoblocks of uniform size. Neither the size of the nanoblocks nor the angle between the tensile axis and the shear bands can be explained in terms of crystal plasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 687–701, 2004 相似文献
7.
C. Z. Chuai S. Li K. Almdal J. Alstrup J. Lyngaae‐Jrgensen 《Journal of Polymer Science.Polymer Physics》2004,42(5):898-913
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004 相似文献
8.
9.
Yaron Paz Ellina Kesselman Lulu Fahoum Irina Portnaya Ory Ramon 《Journal of Polymer Science.Polymer Physics》2004,42(1):33-46
The effect of two strong salting-out salts (Na2SO4 and K2SO4) on the temperature-induced phase-separation process in aqueous solutions of poly(N-isopropylacrylamide) (PNIPA) was examined by attenuated total reflectance/Fourier transform infrared spectroscopy, differential scanning calorimetry, and viscosity measurements. On the basis of these measurements, a detailed scenario of the phase-separation process was deduced. The phase-separation scenario of solutions containing PNIPA and water was altered in the presence of sulfate ions. Here, the sulfate ions induced partial intrachain collapse, manifested by a relatively compact structure well below the lower critical solution temperature. This led to a more gradual, smooth phase transition, with temperature-resolved intrachain collapse and interchain aggregation and a lesser extent of hysteresis. Although at the macrolevel one may not be able to differentiate among various scenarios altering the solvent into a poor solvent, the aforementioned microlevel measurements provided a way to expose the difference between raising the temperature and adding cosolutes. Follow-up studies on the effect of salting-in salts will be presented. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 33–46, 2004 相似文献
10.
Benjamin S. Hsiao Rong-Ming Ho Stephen Z. D. Cheng 《Journal of Polymer Science.Polymer Physics》1995,33(17):2439-2447
Unique crystallization and melting behavior in poly(aryl ether ketone ketone) containing alternated terephthalic and isophthalic moieties were studied by time-resolved synchrotron x-ray methods. Recently, this material has been shown to exhibit three polymorphs (forms I, II, and III). In this work, we further investigated their distinctive thermal properties and found that form I is the dominating and the most thermally stable phase while form II is favored by fast nucleation conditions and is the least stable phase. On the other hand, form III represents a minor intermediate phase that usually coexists with form I and can be transferred from form II and to form I. Structural and morphological changes in form I have been followed by simultaneous wide-angle x-ray diffraction (WAXD)/small-angle x-ray scattering (SAXS) measurements during cold- or melt-crystallization and subsequent melting. In all cases, a larger dimensional change was found in the crystallographic a-axis than the b-axis during heating and cooling. This may be due to the greater lateral stress variation with respect to temperature along the a direction of the primary lamellae which is induced by either the formation of secondary lamellae or the preferential chain-folding direction in poly(aryl ether ketone ketone)s. During the phase transitions of form II ← III in the cold-crystallized specimen and form III ← I in the melt-crystallized samples, lamellar variables (long period, lamellar thickness, and invariant) obtained from SAXS remain almost constant. This indicates that the density distribution in the long spacing is independent of the melting in form II or III. For melt-crystallization, the corresponding changes in unit-cell dimensions and lamellar morphology during the annealing-induced low endotherm are most consistent with the argument that these changes are due to the melting of thin lamellar population. © 1995 John Wiley & Sons, Inc. 相似文献