首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   9篇
  国内免费   28篇
化学   116篇
晶体学   8篇
力学   328篇
综合类   2篇
数学   24篇
物理学   328篇
  2024年   1篇
  2023年   13篇
  2022年   10篇
  2021年   14篇
  2020年   20篇
  2019年   10篇
  2018年   10篇
  2017年   29篇
  2016年   32篇
  2015年   31篇
  2014年   45篇
  2013年   30篇
  2012年   29篇
  2011年   47篇
  2010年   43篇
  2009年   53篇
  2008年   50篇
  2007年   57篇
  2006年   59篇
  2005年   30篇
  2004年   31篇
  2003年   33篇
  2002年   28篇
  2001年   13篇
  2000年   10篇
  1999年   15篇
  1998年   22篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有806条查询结果,搜索用时 656 毫秒
81.
Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer range), but it does not always hold in nanoindentation experiments (indentation depths approaching the nanometer range). Indenter tip radius effect has been proposed by Qu et al. and others as possibly the main factor that causes the deviation from Nix and Gao's relationship. We have developed an indentation model for micro- and nanoindentation, which accounts for two indenter shapes, a sharp, conical indenter and a conical indenter with a spherical tip. The analysis is based on the conventional theory of mechanism-based strain gradient plasticity established from the Taylor dislocation model to account for the effect of geometrically necessary dislocations. The comparison between numerical result and Feng and Nix's experimental data shows that the indenter tip radius effect indeed causes the deviation from Nix-Gao relation, but it seems not be the main factor. The project supported by the National Natural Science Foundation of China (10121202) and the Ministry of Education of China (20020003023)  相似文献   
82.
This study of the dynamic compressive strength properties of metal foams is in two parts. Part I presents data from an extensive experimental study of closed-cell Hydro/Cymat aluminium foam, which elucidates a number of key issues and phenomena. Part II focuses on modelling issues.The dynamic compressive response of the foam was investigated using a direct-impact technique for a range of velocities from 10 to . Elastic wave dispersion and attenuation in the pressure bar was corrected using a deconvolution technique.A new method of locating the point of densification in the nominal stress-strain curves of the foam is proposed, which provides a consistent framework for the definition of the plateau stress and the densification strain, both essential parameters of the ‘shock’ model in Part II. Data for the uniaxial, plastic collapse and plateau stresses are presented for two different average cell sizes of approximately 4 and 14 mm. They show that the plastic collapse strength of the foam changes significantly with compression rate. This phenomenon is discussed, and the distinctive roles of microinertia and ‘shock’ formation are described. The effects of compression rates on the initiation, development and distribution of cell crushing are also examined. Tests were carried out to examine the effects of density gradient and specimen gauge length at different rates of compression and the results are discussed. The origin of the conflicting conclusions in the literature on the correlation between nominal strain rate (ratio of the impact velocity Vi to the initial gauge length lo of the specimen) and the dynamic strength of aluminium alloy foams is identified and explained.  相似文献   
83.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   
84.
Glutens were isolated from flour of three European wheat cultivars which perform differently in cereal products. The rheological and fracture properties of gluten-water doughs were determined in uniaxial and biaxial extension at large deformations and small angle sinusoidal oscillation tests and compared with the mechanical properties of the parental flour doughs. At 25 °C the linear region was in the same range as that of flour dough, while at a higher temperature (45 °C) the linear region was more than an order of magnitude higher. At 45 °C the storage modulus and tan were lower than at 25 °C. Variation in moduli between cultivars was much more pronounced for gluten than for flour doughs.Similarly to flour dough in both uniaxial and biaxial extension the stress () increased more than proportionally with the strain, a phenomenon called strain hardening. The stress at a set strain and strain hardening depended much more strongly on the type of deformation for gluten than for flour dough: was higher in biaxial extension for gluten than for flour dough, but was much higher in uniaxial extension. This indicates that orientational effects in elongational flow are of even larger importance for the mechanical properties of gluten than of flour dough. It is likely that it is the glutenin fraction that, because of its large size, confers these direction dependent properties to gluten and flour doughs. Fracture stresses were much higher for gluten than for flour dough, while fracture strains were in the same range or higher. For gluten dough fracture strains increased less strongly with increasing strain rate than for flour dough. Glutens exhibiting a higher stress at a certain strain had a smaller fracture strain.Our findings confirm the conviction that the large deformation properties of flour dough are mainly governed by the gluten fraction. However, there are also differences. Compared to flour dough gluten dough exhibits (i) a stronger strain hardening, (ii) a larger difference in between uniaxial and biaxial extension and (iii) a smaller strain rate dependency of the fracture strain.  相似文献   
85.
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 µm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.  相似文献   
86.
The paper presents a constitutive framework for solids with dissipative micro-structures based on compact variational statements. It develops incremental minimization and saddle point principles for a class of gradient-type dissipative materials which incorporate micro-structural fields (micro-displacements, order parameters, or generalized internal variables), whose gradients enter the energy storage and dissipation functions. In contrast to classical local continuum approaches to inelastic solids based on locally evolving internal variables, these global micro-structural fields are governed by additional balance equations including micro-structural boundary conditions. They describe changes of the substructure of the material which evolve relatively to the material as a whole. Typical examples are theories of phase field evolution, gradient damage, or strain gradient plasticity. Such models incorporate non-local effects based on length scales, which reflect properties of the material micro-structure. We outline a unified framework for the broad class of first-order gradient-type standard dissipative solids. Particular emphasis is put on alternative multi-field representations, where both the microstructural variable itself as well as its dual driving force are present. These three-field settings are suitable for models with threshold- or yield-functions formulated in the space of the driving forces. It is shown that the coupled macro- and micro-balances follow in a natural way as the Euler equations of minimization and saddle point principles, which are based on properly defined incremental potentials. These multi-field potential functionals are outlined in both a continuous rate formulation and a time-space-discrete incremental setting. The inherent symmetry of the proposed multi-field formulations is an attractive feature with regard to their numerical implementation. The unified character of the framework is demonstrated by a spectrum of model problems, which covers phase field models and formulations of gradient damage and plasticity.  相似文献   
87.
A series of systematic tensile and microbend tests were conducted on copper foil specimens with different thicknesses. The specimens were made of a copper foil having almost unidirectional crystal orientations that was considered to be nearly single-crystal. In order to investigate the effects of slip system interactions, two different crystal orientations relative to the tensile direction were considered in the tests: one is close to coplanar double-slip orientation, and the other is close to the ideal cube orientation (the tensile direction nearly coincides to [0 0 1]) that yields multi-planar multi-slip deformation. We extended the microbend test method to include the reversal of bending, and we attempted to divide the total amount of strain-hardening into isotropic and kinematic hardening components. In the tensile tests, no systematic tendency of size dependence was observed. In the microbend tests, size-dependent kinematic hardening behavior was observed for both the crystal orientations, while size dependence of isotropic hardening was observed only for the multi-planar multi-slip case. We introduce an extended crystal plasticity model that accounts for the effects of the geometrically necessary dislocations (GNDs), which correspond to the spatial gradients of crystallographic slips. Through numerical simulations performed using the model, the origin of the size-dependent behavior observed in the microbend tests is discussed.  相似文献   
88.
The anti-plane problem of an elliptical inhomogeneity with an interfacial crack in piezoelectric materials is investigated. The system is subjected to arbitrary singularity loads (point charge and anti-plane concentrated force) and remote anti-plane mechanical and in-plane electrical loads. Using the complex variable method, the explicit series form solutions for the complex potentials in the matrix and the inclusion regions are derived. The electroelastic field intensity factors, the corresponding energy release rates and the generalized strain energy density at the cracks tips are then provided. The influence of the aspect ratio of the ellipse, the crack geometry and the electromechanical coupling coefficient on the energy release rate and the strain energy density is discussed and shown in graphs. The results indicate that the energy release rate increases with increment of the aspect ratio of the ellipse and the influence of electromechanical coupling coefficient on the energy release rate is significant. The strain energy density decreases with increment of the aspect radio of the ellipse and it is always positive for the cases discussed. The energy release rate, however, can be negative when both mechanical and fields are applied.  相似文献   
89.
We report the results for strain field due to substitutional transition metal impurities in Ni. The Kanzaki lattice static method has been used to calculate the strain field, the effective ion-ion interaction potential due to Wills and Harrison is used to calculate dynamical matrix with first nearest neighbour and the impurity-induced force with second nearest neighbour. The results for 3d, 4d and 5d impurities (Fe, Co, Cu, Nb, Mo, Pd, Pt and Au) are compared with the experimental data, which are found in agreement.  相似文献   
90.
刘宝林 《光子学报》1996,25(5):434-438
本文指出在LP-MOCVD生长过程中,采用量子阱有源区和上限制层不同的生长温度以及生长非掺杂过渡层等技术能有效地控制InGaAs/InP量子阱激光器的p-n结结位,给出了采用DEZn和H2S做掺杂源在InP材料中p型和n型杂质溶度和p-n结控制的条件,并研制出有源区阱层InGaAs与InP存在0.5%压缩应变量子阱激光器,这一结构LD实现室温脉冲激射,得到峰值功率为106mW以上,阈值电流密度为2.6kA/cm2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号