首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   9篇
  国内免费   28篇
化学   116篇
晶体学   8篇
力学   328篇
综合类   2篇
数学   24篇
物理学   328篇
  2024年   1篇
  2023年   13篇
  2022年   10篇
  2021年   14篇
  2020年   20篇
  2019年   10篇
  2018年   10篇
  2017年   29篇
  2016年   32篇
  2015年   31篇
  2014年   45篇
  2013年   30篇
  2012年   29篇
  2011年   47篇
  2010年   43篇
  2009年   53篇
  2008年   50篇
  2007年   57篇
  2006年   59篇
  2005年   30篇
  2004年   31篇
  2003年   33篇
  2002年   28篇
  2001年   13篇
  2000年   10篇
  1999年   15篇
  1998年   22篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有806条查询结果,搜索用时 0 毫秒
11.
In graphene in the presence of strain the elasticity theory metric naturally appears. However, this is not the one experienced by fermionic quasiparticles. Fermions propagate in curved space, whose metric is defined by expansion of the effective Hamiltonian near the topologically protected Fermi point. We discuss relation between both types of metric for different parametrizations of graphene surface. Next, we extend our consideration to the case, when the dislocations are present. We consider the situation, when the deformation is described by elasticity theory and calculate both torsion and emergent magnetic field carried by the dislocation. The dislocation carries singular torsion in addition to the quantized flux of emergent magnetic field. Both may be observed in the scattering of quasiparticles on the dislocation. Emergent magnetic field flux manifests itself in the Aharonov–Bohm effect while the torsion singularity results in Stodolsky effect.  相似文献   
12.
A novel optical extensometer is developed to estimate the local uniform strain on planar surface accurately. The proposed system consists of a shared large format lens and two image sensors, which acquire pairs of images of two isolated small regions on the object surface simultaneously. Digital image correlation (DIC) algorithm is applied to determine the relative displacement between gauge points designated on recorded pairs of images. Then local strain can be extracted after dividing the relative displacement by the scale distance. Moreover, a special experimental setup called “correction sheet” is used to eliminate the virtual strain induced by out-of-plane motions. Uni-axial tensile experiments are performed to validate the reliability and resolution of the optical extensometer, and the measurement results demonstrate that the resolution of the optical extensometer achieves 2–3 με.  相似文献   
13.
We have quantum chemically studied the structure and nature of alkali- and coinage-metal bonds (M-bonds) versus that of hydrogen bonds between A−M and B in archetypal [A−M⋅⋅⋅B] model systems (A, B=F, Cl and M=H, Li, Na, Cu, Ag, Au), using relativistic density functional theory at ZORA-BP86-D3/TZ2P. We find that coinage-metal bonds are stronger than alkali-metal bonds which are stronger than the corresponding hydrogen bonds. Our main purpose is to understand how and why the structure, stability and nature of such bonds are affected if the monovalent central atom H of hydrogen bonds is replaced by an isoelectronic alkali- or coinage-metal atom. To this end, we have analyzed the bonds between A−M and B using the activation strain model, quantitative Kohn-Sham molecular orbital (MO) theory, energy decomposition analysis (EDA), and Voronoi deformation density (VDD) analysis of the charge distribution.  相似文献   
14.
In this paper, the impact of wetting layer, strain reducing layer and dot height on the electronic, linear and nonlinear optical properties of bound to continuum states transitions are investigated in a system of InAs truncated conical shaped quantum dot covered with the InxGa1−x As strain reducing layer. The electronic structure, containing two main states of S and wetting layer states (WL), was calculated by solving one electronic band Hamiltonian with effective-mass approximation. The results reveal that the presence of the strain reducing layer in the structure extends the quantum dot emission to longer wavelength which is reported as a red-shift of the photoluminescence (PL) peak in the experimental measurement. This study also highlights the possibility of improving the intersubband optical properties based on the significant size-dependence of the three layer dot matrix by employing the strain reducing and wetting layers. According to this simulation, relatively tall dots on the thick wetting layer introduce the optimized structure size for practical applications to meet the SRL assisted enhanced dot structure.  相似文献   
15.
目的 探讨三维斑点追踪成像(3D-STI)技术在评价甲状腺功能亢进(甲亢)患者左心室整体收缩功能中的应用价 值。方法 选择50 例甲状腺功能亢进患者与45 例健康志愿者,获取心尖四腔心切面动态图像,存储左心室三维全容积动态图像后,运用3D-STI 软件进行脱机分析,得到两组收缩期左心室整体纵向峰值应变(GLS)、圆周峰值应变(GCS)、左心室扭转度角度峰值(LV-tw)、左心室扭力(LV-tor)、左心室心底水平旋转角度峰值(Prot-B)、左心室心尖水平旋转角度峰值(Prot-A)及左心室射血分数(LVEF)等,比较两组三维应变(3DS)指标之间的差异。结果 与正常对照组比较,甲亢组的左心室收缩功能增强,GLS、GCS 分别为(-20.47±3.08)% vs.(-18.52±4.77)%、(-28.98±3.00)% vs.(-25.88±2.12)%,两组差异均有统计学意义(均P<0.05);甲亢组LV-tw、LV-tor、LVProt-A、LVProt-B 均较正常对照组略有增加,但差异均无统计学意义(均P>0.05)。结论 3D-STI 可无 创、敏感检测甲亢患者左心室三维应变,为临床客观评估甲亢左心室收缩功能提供一种新方法。  相似文献   
16.
Polyurea, a reaction product of isocyanates and an amine blend has been reported to be highly strain rate sensitive, which responds in its own unique way when subjected to increasing strain rates. The amine blend comprise of a long chain amine, forming the soft segments, chain extender, which brings the urea linkages closer and a crosslinker, which serves as a chemical bond between the chains. In this work, we attempt to tune the viscous contribution in polyurea, by increasing crosslinking density, while keeping the amount of chain extender more or less constant. The viscoelastic behavior and its effect on the time dependant behavior was established by extensive dynamic studies. Quasi-static tests and Split Hopkinson testing was performed over large deformation rates (10−4 to 103 s−1). It was observed that polyureas with larger viscous contribution (tan δ), were capable of exhibiting larger strain rate sensitivity.  相似文献   
17.
In this investigation carbon fiber reinforced laminates with different orientation layups are prepared and studied under tensile loading condition. Multiple strain measurement techniques, namely, resistive strain gauges, embedded optical sensors and digital image correlation are used to analyze stress-strain behavior simultaneously through the thickness of composite materials, and to determine the sequence of failure in different plies. Inconsistencies of strains measured through different methods is correlated with the tendency for interlaminar delamination, therefore demonstrating the ability of multi-instrument approach to describe damage progress through the thickness of multidirectional laminates. Complementary analysis through acoustic emission methods reveals that the angle of off-axis surface plies can influence the sequence of failure under tensile loading condition, and damage monitoring capabilities of acoustic emission system is directly affected by delamination tendency of surface plies. Remarkably, the delayed failure of off-axis plies is shown to be related to reorientation of these layer towards loading direction using infrared thermography method.  相似文献   
18.
《Physics letters. A》2020,384(23):126534
Strain and charge doping are the effective ways to modulate the electronic and phonon properties of materials. The effects of biaxial tensile strains and charge dopings on the stabilities of HfSe2 monolayer have been systematically investigated using first-principles methods. Its two-dimensional Young's modulus is only 65.4 N/m, and it is easy to be stretched. When the tensile strain is applied on HfSe2 monolayer, two of its phonon modes soften with one frequency decreasing to zero at critical strain. Our results show that electron and hole dopings could suppress the softening of phonon modes, and significantly enhance the ideal strength by 28% and 36%, respectively. The calculations for electronic structures and phonon dispersions provide the theoretical references for future nano-device designing.  相似文献   
19.
《Comptes Rendus Mecanique》2019,347(8):601-614
During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.  相似文献   
20.
The confinement energy of T-shaped quantum wires (QWRs), which were fabricated by the cleaved edge overgrowth technique in a way that the QWRs form at the intersection of In0.2Al0.8As stressor layers and the overgrown (1 1 0) GaAs quantum well (QW), is examined using micro-photoluminescence spectroscopy. Photoluminescence (PL) signals from individual QWRs can be spatially resolved, since the strained films are separated by 1 μm wide Al0.3Ga0.7As layers. We find that due to the tensile strain being transmitted to the QW, the confinement energy of the QWRs rises systematically up to 40 meV with increasing thickness of the stressor layers. By reducing the excitation power to 0.1 μW the QWR PL emission occurs 48 meV redshifted with respect to the QW. All QWR peaks exhibit smooth lineshapes, indicating the absence of pronounced exciton localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号