首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4255篇
  免费   616篇
  国内免费   299篇
化学   1019篇
晶体学   17篇
力学   191篇
综合类   44篇
数学   1251篇
物理学   2648篇
  2024年   12篇
  2023年   24篇
  2022年   381篇
  2021年   375篇
  2020年   158篇
  2019年   103篇
  2018年   98篇
  2017年   100篇
  2016年   148篇
  2015年   119篇
  2014年   173篇
  2013年   253篇
  2012年   179篇
  2011年   214篇
  2010年   186篇
  2009年   235篇
  2008年   259篇
  2007年   249篇
  2006年   241篇
  2005年   228篇
  2004年   185篇
  2003年   192篇
  2002年   167篇
  2001年   117篇
  2000年   95篇
  1999年   93篇
  1998年   71篇
  1997年   87篇
  1996年   49篇
  1995年   31篇
  1994年   45篇
  1993年   34篇
  1992年   43篇
  1991年   27篇
  1990年   19篇
  1989年   25篇
  1988年   27篇
  1987年   17篇
  1986年   9篇
  1985年   12篇
  1984年   9篇
  1982年   15篇
  1981年   13篇
  1980年   12篇
  1979年   12篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1972年   3篇
  1969年   4篇
排序方式: 共有5170条查询结果,搜索用时 15 毫秒
91.
A new equation is suggested to define the temperature dependence of the Gibbs energy of hydration of hydrophobic substances: ΔG 0 = b 0 + b 1 T + b 2lnT. According to this equation, the hydration heat capacity is in inverse proportion to temperature. Consistent values of hydration heat capacity of nonpolar solutes have been obtained for different temperatures using data on solubility and dissolution enthalpy. The contributions of the hydrocarbon radicals and OH group to the heat capacity of hydration of the compounds were found for the temperature range 248–373 K. The hydration heat capacity of the hydroxyl group has a weak dependence on temperature and increases by only 12 J/(mol·K) in the specified temperature interval. Changes in the hydration entropy of hydrophobic and OH groups are calculated for the temperature increasing from 248 K to 373 K.  相似文献   
92.
Using the Picker flow microcalorimeter, excess heat capacities have been obtained at 25°C throughout the concentration range for 2,2-dimethylbutane,n-hexane, and cyclohexane each mixed with a series of hexadecane isomers of increasing degrees of orientational order, as determined by depolarized Rayleigh scattering. The isomers are 2,2,4,4,6,8,8-heptamethylnonane, 6-, 4-, and 2-methylpentadecane, andn-hexadecane. Thec p E values are negative, increasing rapidly in magnitude with increase of orientational order, and are not predicted by the Prigogine—Flory theory which neglects order. Values ofc p E are obtained at 10, 25, and 55°C for cyclohexane +6-, 4-, and 2-methylpentadecane which with other literature data lead to the temperature dependence of the thermodynamic excess functions for cyclohexane solutions of the five C16 isomers. The excess enthalpy and entropy vary with the C16 isomer and with temperature, but the corresponding variation of the excess free energy is small, indicating a high degree of enthalpy-entropy compensation. This is consistent with a rapid decrease with temperature of orientational order in the C16 isomers.  相似文献   
93.
Conductivities of aqueous solutions ofortho-, meta-, andpara-toluic acids have been measured for the concentration range 0.1–2 millimolar and at 5° intervals from 5 to 100°C. At each temperature pK a(m) andA 0 have been calculated using the paired ion model recently described by Fuoss. Thermodynamic parameters have been calculated for the ionization of each acid, and Walden products for the anions. Results are discussed in terms of contributions to acidity by enthalpy and entropy changes as well as by hydration of the various solute species.  相似文献   
94.
Summary The generator contains diffusion tubes of known length and internal diameter. Once produced, the mixture of the carrier gas and acetone, the reference material, is sent through a chromatographic flame ionisation detector. Its signal reaches a constant level after a time corresponding to the stabilization time of the generator. The technique described is simple and gives repeatable results.  相似文献   
95.
The kinetic method is one of the most widely used experimental techniques for the measurement of thermochemical parameters by mass spectrometry. Recently it has been realized that it can also be used to determine reaction entropies, but the validity of this approach has not been established. This Perspective evaluates kinetic method plots in cases where there is a significant entropy difference between the competing fragmentation channels (i.e. between sample and reference compounds in the dissociating cluster ion). The concept underlying this study is to calculate mass spectra theoretically, based on known thermochemical parameters and as a function of experimental conditions. This can be done accurately using the RRKM-based MassKinetics software. The resulting mass spectra are then interpreted by the kinetic method, yielding DeltaH and DeltaS values. These values are, in turn, compared with the true values used to generate the calculated mass spectra. The results show that the reaction entropy difference between sample and reference has a very large influence on kinetic method plots. This should always be considered when studying energy-dependent mass spectra (using metastable ions or low- or high-energy collision-induced dissociation (CID)), even if only DeltaH is to be determined. Kinetic method plots are not strictly linear and this becomes a serious issue in the case of small molecules showing a large entropy effect. In such cases, results obtained at a low degree of excitation are more accurate. Energy and entropy effects can be evaluated in a relatively straightforward manner: first, the apparent Gibbs energy (DeltaG(app)) and effective temperature (T(eff)) are determined from kinetic method plots (intercept and slope, respectively), obtained from experiments using various degrees of excitation. Second, the resulting DeltaG(app) is plotted against T(eff), the slope yielding DeltaS while the intercept (extrapolation to zero temperature) yields DeltaH. This data evaluation yields more accurate results than alternative methods used in the literature. The resulting DeltaH values are fairly accurate, with errors, in most cases, <4 kJ mol(-1). On the other hand, DeltaS is systematically underestimated by 20-40%. Empirically scaling DeltaS values determined by the kinetic method by 1.35 results in a DeltaS value within 20% (or 10 J mol(-1) K(-1)) of the theoretical value.  相似文献   
96.
The pressure of thermal dissociation of platinum tetrachloride by the first step PtCl4(s) = PtCl3(s) + 0.5 Cl2(g) was measured by the static method with a quartz membrane-gauge zero-pressure manometer. An approximating equation for the dissociation pressure vs. temperature was found. The enthalpy (52160±880 J mol−1) and entropy (72.1±1.6 J mol−1 K−1) of dissociation were calculated. The heat of formation found for platinum tetrachloride (−246.3±1.3 kJ mol−1) at 298.15 K agrees well with the value obtained by the calorimetric method (−245.6±1.9 kJ mol−1).__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2028–2031, October, 2004.  相似文献   
97.
Excess enthalpies (H E) of 17 binary mixtures of o- and m-isomers of dichlorobenzene, difluorobenzene, methoxymethylbenzene, dimethylbenzene, dimethoxybenzene, aminofluorobenzene, fluoronitrobenzene, diethylbenzene, chlorofluorobenzene, fluoroiodobenzene, bromofluorobenzene, chloromethylbenzene, fluoromethylbenzene, bromomethylbenzene, iodomethylbenzene, fluoromethoxybenzene, dibromobenzene at 298.15 K were measured. All excess enthalpies measured were very small, and those of o-+m-isomers of aminofluorobenzene, dibromobenzene and iodomethylbenzene were negative but 14 other binary mixtures of isomers were positive over the whole range of mole fractions. H E of o-+m-isomers of dimethoxybenzene showed the largest enthalpic instability and those of aminofluorobenzene showed the largest enthalpic stability. There was a correlation between dipole–dipole interaction, dipole–induced dipole interaction or entropies of vaporization and excess partial molar enthalpies at infinite dilution.  相似文献   
98.
A method of statistical estimation is applied to the problem of evaluating the absolute entropy of internal rotation in a molecule with two torsional degrees of freedom. The configurational part of the entropy is obtained as that of the joint probability density of an arbitrary form represented by a two-dimensional Fourier series, the coefficients of which are statistically estimated using a sample of the torsional angles of the molecule obtained by a stochastic simulation. The internal rotors in the molecule are assumed to be attached to a common frame, and their reduced moments of inertia are initially calculated as functions of the two torsional angles, but averaged over all the remaining internal degrees of freedom using the stochastic-simulation sample of the atomic configurations of the molecule. The torsional-angle dependence of the reduced moments of inertia can be also averaged out, and the absolute internal-rotation entropy of the molecule is obtained in a good approximation as the sum of the configurational entropy and a kinetic contribution fully determined by the averaged reduced moments of inertia. The method is illustrated using Monte Carlo simulations of isomers of stilbene and halogenated derivatives of propane. The two torsional angles in cis-stilbene are found to be much more strongly correlated than those in trans-stilbene, while the degree of the angular correlation in propane increases strongly on substitution of hydrogen atoms with chlorine.  相似文献   
99.
The water-structural contributions to the entropies and heat capacities of hydration of over 120 ions and the viscosity B-coefficients of nearly 80 aqueous ions are tabulated and correlated. B-coefficients for many more ions are predicted from this relationship and from their dependence on ionic size and charge. The structural entropies determine a unique scale of water structure making and breaking by the ions.  相似文献   
100.
Equilibrium data for the adsorption of phenolic compounds, i.e., phenol, p-cresol, p-chlorophenol and p-nitrophenol from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent (NJ-8) within temperature range of 283-323 K were obtained and correlated with a Freundlich-type of isotherm equation, so that equilibrium constants KF and n were obtained. The capacities of equilibrium adsorption for all the four phenolic compounds on the NJ-8 from aqueous solutions are around 2 times as high as those of Amberlite XAD-4, which may be attributed to the unusual micropore structure and the partial polarity on the network. The values of the enthalpy (always negative) are indicative of an exothermic process, which manifests the adsorption of all the four phenolic compounds on the two polymeric adsorbents to be a process of physical adsorption. The negative values of free energy change show that the solute is more concentrated on the adsorbent than in the bulk solution. The absolute free energy values of adsorption for NJ-8 are always higher than those for Amberlite XAD-4, which indicates that phenolic compounds are preferentially adsorbed on NJ-8. The negative values of the adsorption entropy are consistent with the restricted mobilities of adsorbed molecules of phenolic compounds as compared with the molecules in solution. The adsorption entropy values of phenolic compounds for NJ-8 are lower than those for Amberlite XAD-4, which means the micropores of NJ-8 require more orderly arranged adsorbate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号