首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4167篇
  免费   874篇
  国内免费   315篇
化学   1400篇
晶体学   44篇
力学   53篇
综合类   16篇
数学   116篇
物理学   3727篇
  2024年   7篇
  2023年   83篇
  2022年   89篇
  2021年   89篇
  2020年   114篇
  2019年   97篇
  2018年   121篇
  2017年   145篇
  2016年   162篇
  2015年   159篇
  2014年   241篇
  2013年   308篇
  2012年   282篇
  2011年   335篇
  2010年   234篇
  2009年   279篇
  2008年   336篇
  2007年   275篇
  2006年   295篇
  2005年   201篇
  2004年   181篇
  2003年   181篇
  2002年   160篇
  2001年   127篇
  2000年   144篇
  1999年   116篇
  1998年   117篇
  1997年   70篇
  1996年   62篇
  1995年   49篇
  1994年   46篇
  1993年   33篇
  1992年   37篇
  1991年   23篇
  1990年   20篇
  1989年   24篇
  1988年   18篇
  1987年   14篇
  1986年   14篇
  1985年   11篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1981年   11篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有5356条查询结果,搜索用时 62 毫秒
171.
Imidazole derivatives, namely, 1-((1-(piperazinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (PBIP), and 1-((1-(morpholinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (MBIP) were synthesized and investigated as inhibitors for mild steel corrosion in 15% HCl solution using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. It was found that the inhibition efficiency of both the inhibitors increases with increase in concentration of inhibitors and decreases with increase in temperature. The inhibitors, PBIP and MBIP, show corrosion inhibition efficiency of 92.6% and 91.4% at 300 ppm concentration, respectively, at 303 K. Polarization studies showed that both the studied inhibitors were of mixed type in nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for surface study of uninhibited and inhibited mild steel samples. The semi-empirical AM1 method was employed for theoretical calculations.  相似文献   
172.
设计合成了具有荧光基团的新型硝酮类自由基捕获探针并对其结构进行了表征.自由基捕获实验结果表明,该探针能实现对超氧阴离子自由基与碳中心自由基的捕获.此外,该自由基捕获探针反应产物的荧光强度与被捕获自由基浓度之间存在相关性,有望建立依据荧光强度分析被捕获自由基浓度的新方法.  相似文献   
173.
In this study, we developed a simple and selective spin column extraction technology utilizing hydrophilic molecularly imprinted polymers as the sorbents for extracting nitrophenol pollutants in water samples (the East Lake, the Yangtze River, and wastewater). The whole procedure was achieved by centrifugation of the spin column, and multiple samples were simultaneously processed with a low volume of solvent and without evaporation. Under the optimized condition, recoveries of nitrophenol compounds on the spin column packed with hydrophilic molecularly imprinted polymers ranged from 87.3 to 92.9% and an excellent purification effect was obtained. Compared with activated carbon, multi‐walled carbon nanotubes, LC‐C18 sorbents, hydrophilic molecularly imprinted polymers exhibited a highly selective recognition ability for nitrophenol compounds and satisfactory sample extraction efficiency. Subsequently, the spin column extraction coupled with high‐performance liquid chromatography was established, which was found to be linear in the range of 2–1000 ng/mL for 2,4‐dinitropehnol and 2‐nitrophenol, and 6–1000 ng/mL for 4‐nitrophenol with correlation coefficients greater than 0.998. The detection limits ranged from 0.3–0.5 ng/mL. It is shown that the proposed method can be used for the determination of trace nitrophenol pollutants in complex samples, which is not only beneficial for water quality analysis but also for environmental risk assessment.  相似文献   
174.
NMR studies of synthetic polymers and biomacromolecules, which provide insight into the conformation and dynamics of these materials, can benefit strongly from the increased sensitivity offered by dynamic nuclear polarization (DNP) and other hyperpolarizing methods. In this study 1H DNP nuclear spin hyperpolarization of two polybutadiene samples, representing a supercooled liquid and an entangled polymer melt, is demonstrated at 0.35 T magnetic field strength and at temperatures between −80 and +50 °C. Electron spin polarization transfer from the α,γ‐bisdiphenylene‐β‐phenylallyl radical to the sample nuclei is achieved by the Overhauser and solid effect. DNP signal enhancements are studied, varying the electron spin resonance offset, microwave power, and sample temperature. The influence of spin relaxation times, line widths, and molecular dynamics are discussed. The results show promising, up to 15‐fold NMR signal enhancements using noncryogenic temperatures and an inexpensive setup that is less technically demanding than current high‐field DNP setups.

  相似文献   

175.
Wurtzite ZnO thin films were prepared on sapphire substrate by metal organic chemical vapor deposition (MOCVD). Raman scattering studies on different crystallographic textures were performed in the backscattering geometry, and polarization effect is investigated in different configurations and . ZnO Raman modes are investigated in each texture. In the case of ZnO thin film deposed on r‐() sapphire plane and using backscattering geometry, new Raman line was observed at 390 cm−1 because this mode has not been noticed in this geometry. It is shown that the frequencies of the quasi‐phonon modes of the examined thin film are in good agreement with the theoretical values calculated within the framework of Loudon model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
176.
Following Mie theory, nanoparticles made of a high‐refractive‐index dielectric, such as silicon, exhibit a resonator‐like behavior and very rich resonance spectra. Which electric or magnetic particle mode is excited depends on the wavelength, the refractive‐index contrast relative to the environment, and the geometry of the nanoparticle itself. In addition, the spatial structure of the impinging light field plays a major role in the excitation of the nanoparticle resonances. Here, it is shown that, by tailoring the excitation field, individual multipole resonances can be selectively addressed while suppressing the excitation of other particle modes. This enables a detailed study of selected individual resonances without interference by the other modes.

  相似文献   

177.
Diffusiophoresis phenomenon of aoft particles suspended in binary electrolyte solutions is explored theoretically in this study based on the spherical cell model, focusing on the chemiphoresis component in absence of diffusion potential. Both the electrostatic and hydrodynamic aspects of the boundary confinement, or steric effect, due to the presence of neighboring particles are examined extensively under various electrokinetic conditions. Significant local extrema are found in mobility profiles expressed as functions of the Debye length in general, synchronized with the strength of the motion-inducing double layer polarization. Moreover, a seemingly peculiar phenomenon is observed that the soft particles may move faster in more concentrated suspensions. The competition between the simultaneous enhancement of the motion-inducing electric driving force and the motion-retarding hydrodynamic drag force from the boundary confinement effect of the neighboring particles is found to be responsible for it. The above findings are also demonstrated experimentally in a very recent study on the diffusiophoretic motion of soft particles through porous collagen hydrogels. The results presented here are useful in various practical applications of soft particles like drug delivery.  相似文献   
178.
We report on the investigation of electropreconcentration phenomena in micro-/nanofluidic devices integrating 100 μm long nanochannels using 2D COMSOL simulations based on the coupled Poisson–Nernst–Planck and Navier–Stokes system of equations. Our numerical model is used to demonstrate the influence of key governing parameters such as electrolyte concentration, surface charge density, and applied axial electric field on ion concentration polarization (ICP) dynamics in our system. Under sufficiently extreme surface-charge-governed transport conditions, ICP propagation is shown to enable various transient and stationary stacking and counter-flow gradient focusing mechanisms of anionic analytes. We resolve these spatiotemporal dynamics of analytes and electrolyte ICP over disparate time and length scales, and confirm previous findings that the greatest enhancement is observed when a system is tuned for analyte focusing at the charge, excluding microchannel, nanochannel electrical double layer (EDL) interface. Moreover, we demonstrate that such tuning can readily be achieved by including additional nanochannels oriented parallel to the electric field between two microchannels, effectively increasing the overall perm-selectivity and leading to enhanced focusing at the EDL interfaces. This approach shows promise in providing added control over the extent of ICP in electrokinetic systems, particularly under circumstances in which relatively weak ICP effects are observed using only a single channel.  相似文献   
179.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   
180.
The spin polarization of carbon nanomaterials is crucial to design spintronic devices. In this paper, the first-principles is used to study the electronic properties of two defect asymmetric structures, Cap-(9, 0)-Def [6, 6] and Cap-(9, 0)-Def [5, 6]. We found that the ground state of Cap-(9, 0)-Def [6, 6] is sextet and the ground state of Cap-(9, 0)-Def [5, 6] is quartet, and the former has a lower energy. In addition, compared with Cap-(9, 0) CNTs, the C adatom on C30 causes spin polarization phenomenon and Cap-(9, 0)-Def [6, 6] has more spin electrons than Cap-(9, 0)-Def [5, 6] structure. Moreover, different adsorb defects reveal different electron accumulation. This finding shows that spin polarization of the asymmetric structure can be adjusted by introducing adatom defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号