首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1932篇
  免费   469篇
  国内免费   788篇
化学   1778篇
晶体学   111篇
力学   163篇
综合类   10篇
数学   23篇
物理学   1104篇
  2024年   7篇
  2023年   15篇
  2022年   64篇
  2021年   84篇
  2020年   93篇
  2019年   64篇
  2018年   62篇
  2017年   86篇
  2016年   149篇
  2015年   110篇
  2014年   174篇
  2013年   241篇
  2012年   227篇
  2011年   278篇
  2010年   216篇
  2009年   228篇
  2008年   203篇
  2007年   200篇
  2006年   181篇
  2005年   140篇
  2004年   112篇
  2003年   83篇
  2002年   51篇
  2001年   39篇
  2000年   21篇
  1999年   7篇
  1998年   10篇
  1997年   12篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1971年   1篇
  1957年   1篇
排序方式: 共有3189条查询结果,搜索用时 31 毫秒
71.
72.
Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3O4@C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+/electrons transportation and electrolyte penetration. This novel structure endows the Fe3O4@C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g−1 up to 100 cycles at 0.5 A g−1) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g−1 at 0.15, 0.3, 0.75, and 1.5 A g−1, respectively). Fe3O4@C nanotube arrays still achieve a capacity of 665 mA h g−1 after 50 cycles at 0.1 A g−1 in Fe3O4@C//LiCoO2 full cells.  相似文献   
73.
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.  相似文献   
74.
Toward the goal of smart sensor systems for wearable electronics, polymer microfiber‐based free‐standing sensors benefit from excellent flexibility, decent ductility, and easy wearability in comparison with thin‐film‐based sensing devices. Herein, we report a hydrophobic and conducting single‐strand microfiber‐based liquid‐phase chemical sensor consisting of polyurethane (PU), tin oxide (SnO2), and carbon nanotube (CNT) composites with applying a (1H,1H,2H,2H‐heptadecafluorodec‐1‐yl) phosphonic acid (HDF‐PA)‐based self‐assembled monolayer. The free‐standing HDF‐PA‐treated PU–SnO2–CNT composite microfiber showing selective filtering properties with the repellency of water and the penetration of an organic solvent is electrically and mechanically characterized. Finally, the single‐strand HDF‐PA‐treated PU–SnO2–CNT composite microfiber‐based chemical sensor, which shows excellent mechanical properties and aqueous stability, is demonstrated to detect the presence of a chemical in pure water or counterfeit gasoline in pure gasoline by observing mechanical changes, especially variations in the length and diameter of the fiber, and monitoring the electrical resistance change. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 495–502  相似文献   
75.
In this study, strain rate effects on the compressive mechanical properties of randomly structured carbon nanotube (CNT) networks were examined. For this purpose, three-dimensional atomistic models of CNT networks with covalently-bonded junctions were generated. After that, molecular dynamics (MD) simulations of compressive loading were performed at five different strain rates to investigate the basic deformation characteristic mechanisms of CNT networks and determine the effect of strain rate on stress–strain curves. The simulation results showed that the strain rate of compressive loading increases, so that a higher resistance of specimens to deformation is observed. Furthermore, the local deformation characteristics of CNT segments, which are mainly driven by bending and buckling modes, and their prevalence are strongly affected by the deformation rate. It was also observed that CNT networks have superior features to metal foams such as metal matrix syntactic foams (MMSFs) and porous sintered fiber metals (PSFMs) in terms of energy absorbing capabilities.  相似文献   
76.
The electronic and optical properties of different stacked multilayer SiC and GeC are investigated with and without external electric field (EEF). The band gaps of multilayer SiC and GeC are found smaller than that of monolayer SiC and GeC due to the interlayer coupling effect. When EEF is applied, the direct band gaps (ΔKM) of multilayer SiC and direct band gaps (ΔKK) of multilayer GeC all turn to indirect band gaps (ΔKG) as the band at the G point drops dramatically toward zero. The imaginary part ε2(ω)s of multilayer SiC and GeC show that new absorption peaks between 2–5 eV appear when the polarized direction is perpendicular to the layer plane, and new absorption peaks in infrared region appear as the EEF is higher than a certain point when the polarized direction is parallel to the layer plane. Our calculations reveal that different stacking sequences and EEF can provide a wide tunable band structures and optical properties for multilayer SiC and GeC.  相似文献   
77.
《Analytical letters》2012,45(12):1885-1896
This work describes the electrochemical behavior of diclofenac on the surface of a carbonceramic electrode (CCE) modified with multi-walled carbon nanotubes (MWCNT) and an ionic liquid (IL) composite. The MWCNT-IL composite showed an enhancement effect in the electro-oxidation of diclofenac with respect to a bare carbon ceramic electrode. Based on the experimental outcomes, a possible mechanism for the electro-oxidation of diclofenac is proposed and discussed. Under the optimized experimental conditions, the MWCNT-IL CCE showed a linear response to diclofenac over the concentration range 50 nM–20 µM with a detection limit of 27 nM. The developed diclofenac sensor showed good stability, sensitivity, and reproducibility in the measurement of diclofenac in human blood plasma samples.  相似文献   
78.
Abstract

Density functional theory (DFT) calculations at the B3LYP/6–31G* level were performed to investigate covalent functionalization of imidazole on pristine (in gas and H2O phases) and Ga-doped BPNT models in terms of energetic, geometric, and electronic properties. The results show that imidazole, as a functional group, prefers to be adsorbed via its nitrogen atom on the pristine, GaB, and GaP nanotube models. The adsorption energy of imidazole on the (6,0) zigzag BPNT in gas and solvent phases is ?0.76 and ?1.11 eV, respectively, and about 0.38 and 0.43 electron are transferred from the imidazole to nanotube in the phases. The presence of a polar solvent increases the electron donor of imidazole molecule. The results show that Ga doping can significantly enhance the adsorption energy of imidazole on the nanotube models to about 95%.

Moreover, the imidazole adsorption on the pristine and Ga-doped BPNT models has not significant changes in the energy gap of the nanotube models and it is slightly changed after covalent functionalization process. This study may provide new insight to the development of functionalized boron phosphide nanotubes for generation of the new hybrid compounds especially in drug delivery systems for virtual applications.  相似文献   
79.
A methodology for improving antistatic property of polyetherimide (PEI) composite using polyaniline (PANI) grafted multi‐walled carbon nanotubes (MWNTs) as conductive medium was proposed. First, the MWNTs grafted with PANI (PANI‐g‐MWNTs) were prepared by in‐situ polymerization in an emulsion system. Subsequently, PANI‐g‐MWNTs were blended with PEI using N‐methyl‐2‐pyrrolidone as solvent. After removing the solvent, the PEI/PANI‐g‐MWNT composite was prepared. As assisted conductive medium, the grafted PANI molecular chains on MWNT surface were dispersed in the PEI matrix to decrease the percolation value of the antistatic composites. The structure and morphology of PANI‐g‐MWNTs were characterized by Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X‐ray powder diffraction, respectively. The dispersion of PANI‐g‐MWNTs in PEI matrix was studied by scanning electron microscope. The electrical performance was characterized by highly resistant meter. The volume resistivity of the conductivity percolation threshold was 1.781 × 10?8 S/cm when the loading of PANI‐g‐MWNTs was 1.0 wt%. The conductivity of PANI‐g‐MWNTs/PEI composites was found to be higher than that of pristine MWNTs/PEI composite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
80.
We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic–semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n−2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号