首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   986篇
  免费   24篇
  国内免费   72篇
化学   242篇
晶体学   11篇
力学   6篇
综合类   3篇
数学   63篇
物理学   757篇
  2024年   2篇
  2023年   15篇
  2022年   8篇
  2021年   9篇
  2020年   16篇
  2019年   16篇
  2018年   13篇
  2017年   23篇
  2016年   32篇
  2015年   20篇
  2014年   60篇
  2013年   53篇
  2012年   41篇
  2011年   94篇
  2010年   78篇
  2009年   76篇
  2008年   84篇
  2007年   68篇
  2006年   66篇
  2005年   50篇
  2004年   34篇
  2003年   28篇
  2002年   29篇
  2001年   25篇
  2000年   26篇
  1999年   16篇
  1998年   28篇
  1997年   8篇
  1996年   22篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   5篇
  1987年   1篇
  1985年   4篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1082条查询结果,搜索用时 296 毫秒
21.
用电化学和光电化学方法研究锑化镓表面的腐蚀以及锑化镓表面氧化膜的生成和溶解,锑化镓电极在一定电势下生成的氧化膜,用俄歇能谱证明,其主要成分为难溶的氧化锑,此氧化膜的存在抑制了锑化镓的进一步腐蚀,同时亦使锑化镓的半导体光电化学性能大为减弱,通过激光微刻蚀及电子显微镜的观察,在刻蚀剂中添加酒石酸,柠檬酸和氢氟酸等试剂,可使刻蚀形得改善,实验研究了锑化镓的平带电势的测定。  相似文献   
22.
A photoelectrochemical cell with a coupled SnO2|CdSe nanocrystalline semiconductor electrode has been prepared by sequential deposition of SnO2 and CdSe films onto an optically transparent electrode (OTE), and its photoelectrochemical behavior has been studied. The results show that the coupling of CdSe with SnO2 leads to an improvement in the performance of OTE|SnO2|CdSe over OTE|CdSe cells in terms of increased incident photon-to-current conversion efficiency, increased stability and smaller reversal of current. The favorable positioning of the energy bands of SnO2 and CdSe is responsible for the above observations. Various photoelectrochemical parameters of the OTE|SnO2|CdSe cell obtained for an incident light power of 0.31 mW cm−2 at 470nm, are as follows: Isc ≈ 25–30 μA cm−2, Voc ≈ 0.5–0.6 V, ƒƒ = 0.47 and a power conversion efficiency of about 2.25%.  相似文献   
23.
Based on sonochemical technique, large-scale PbS nanobelts are successfully synthesized in the mixed solution of PbCl2 and Na2S2O3. These nanobelts are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), selected area electronic diffraction, energy dispersive X-ray spectroscopy, and high-resolution TEM. The as-synthesized PbS nanobelts have width of about 80 nm, length up to several millimeters, and width-to-thickness ratio of about 5. In addition, the growth mechanism of PbS nanobelts is suggested.  相似文献   
24.
The double perovskites La2CoVO6, La2CoTiO6, and La2NiVO6, are described. Rietveld fitting of neutron and powder X-ray diffraction data show La2NiVO6 and La2CoVO6 to have a disordered arrangement of B-cations whereas La2CoTiO6 shows ordering of the B-cations (with ∼5% Co/Ti inversion). Curie-Weiss fits to the linear region of the 1/χ plots reveal Weiss temperatures of −107, −34.8, and 16.3 K for La2CoVO6, La2CoTiO6, and La2NiVO6, respectively, and magnetic transitions are observed. La2CoTiO6 prepared by our method differs from material prepared by lower-temperature routes. A simple antiferromagnetic spin model is consistent with the data for La2CoTiO6. These compounds are semiconductors with bandgaps of 0.41 (La2CoVO6), 1.02 (La2CoTiO6) and 0.45 eV (La2NiVO6).  相似文献   
25.
Nanocrystalline cadmium peroxide thin film has been electrodeposited on indium doped tin oxide glass substrate from aqueous solution at room temperature. The grain size of the nanocrystals of the film is estimated from XRD and is about 14 nm. The deposits are decomposed at 228 °C by formation of CdO, releasing plentiful heat at same time. The band-gap of the nanocrystalline CdO film made from decomposition of electrodeposited CdO2 is around 2.4 eV.  相似文献   
26.
 主要介绍S-5N的结构及测试实验结果。S-5N型全固态重复频率脉冲发生器是目前国际上同类源中峰值功率和平均功率均为最大的一台。随负载大小的变化,S-5N脉冲发生器的输出电压为400~600kV,输出电流2~3kA,输出脉冲半高宽40~50ns,单脉冲输出能量40~65J。 S-5N脉冲发生器在300Hz重复频率条件下可连续工作,500Hz重复频率条件下可连续工作3min,平均输出功率高达30kW。  相似文献   
27.
T. Kuroda  F. Minami  S. Seto 《Phase Transitions》2013,86(7-8):1019-1026
Time-resolved magneto photoluminescence in a diluted magnetic semiconductor Cd 0.9 Mn 0.1 Te has been carried out with varying exciton density from 10 14 to 10 19 cm m 3 . The reduction of the Zeeman shift and that of the magnetic polaron energy was found under strong photoexcitation. The spectral feature is interpreted in terms of the heating of the manganese spin subsystem. Polarization dependence of the spin heating is observed for the first time, revealing the contribution of the spin flip between excitons and magnetic ions to the heating process.  相似文献   
28.
Delafossite CuFeO2 oxide was synthesized by a hydrothermal technique using Cu2O and FeOOH as precursors with the addition of fused NaOH as mineralizer. The amount of rhombohedral and hexagonal delafossite phase formed depends on the synthesis time lapses between 2 and 5 days and on the NaOH concentration. The compounds obtained were analyzed with Raman Spectroscopy, X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) in order to obtain their morphological and structural properties. Optical behavior was studied by UV–vis Spectroscopy and gas adsorption measured with a Quartz-Crystal Microbalance (QCM). Our results show that this type of hydrothermal synthesis is capable of recreating the delafossite-type structure of copper-iron oxide and produces a high yield of material with the right stoichiometry. The highest uptake of carbon dioxide is observed on the sample with the highest ratio between rhombohedral and hexagonal delafossite phase.  相似文献   
29.
In this paper, a model to calculate the dark current of quantum well infrared photodetectors at high-temperature regime is presented. The model is derived from a positive-definite quantum probability-flux and considers thermionic emission and thermally-assisted tunnelling as mechanisms of dark current generation. Its main input data are the wave functions obtained by time-independent Schrodinger equation and it does not require empirical parameters related to the transport of carriers. By means of this model, the dark current of quantum well infrared photodetectors at high-temperature regime is investigated with respect to the temperature, the barrier width, the applied electric field and the position of the first excited state. The theoretical results are compared with experimental data obtained from lattice-matched InAlAs/InGaAs, InGaAsP/InP on InP substrate and AlGaAs/GaAs structures with rectangular wells and symmetric barriers, whose absorption peak wavelengths range from MWIR to VLWIR. The corresponding results are in a good agreement with experimental data at different temperatures and at a wide range of applied electric field.  相似文献   
30.
New hybrid nanomaterials, with improved photocatalytic performance in pollutants removal, were obtained through the modification of titanate nanotubes (TNT) with a cobalt porphyrin, the cyanocobalamin, also knowing as vitamin B12 (B12). The nanocrystalline TNT were produced by hydrothermal treatment and after treated with cobalamin to produce B12-TNT materials. The characterization of the new hybrid material was performed by XRD, FTIR, TEM-EDS, DRS, XPS and ICP. The results show that the immobilization of the cobalt containing specie is dependent on the point of zero charge of the TNT and no modifications on the structure and morphology were observed. No significant changes in the optical band gap were observed after B12 incorporation, but an increasing in the visible light absorption, which arises from charge transfer and dd transitions of the cobalt, was visualized. The samples photocatalytic performance was studied for the hydroxyl radical production and the highest catalytic ability was achieved by the B12-HTNT sample. The catalytic ability of these new hybrid nanomaterials for two model pollutants photodegradation, phenol and rhodamine B (RhB) was investigated. For both pollutants, the best results were achieved using B12-HTNT with a removal of 94% of a 10 ppm RhB and 87% of a 20 ppm phenol solution in 90 min of irradiation (150 mL, 0.2 g catalyst/L).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号