首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  国内免费   2篇
化学   10篇
力学   4篇
综合类   2篇
数学   1篇
物理学   7篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1989年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
This study introduces the application of the synchrotron radiation induced X-ray fluorescence (SR-XRF) microprobe installed at the Super Photon ring-8 GeV (SPring-8), which is the world's largest third-generation synchrotron radiation facility, to the specification of chemical properties of various atmospheric samples. The combination of visual elemental mapping and XRF spectral analyses allows for the interpretation of the nature and composition of individual particles. Individually collected droplets by the replication technique were also irradiated by X-ray microbeam to carry out visual reconstruction of elemental maps for their multiple components. The multielemental peaks corresponding to X-ray energy were also successfully resolved. Because the chemical contents of solute for individual droplets can be definitely clarified in this study, we can describe the mechanisms involved in droplet formation and pollutant scavenging. The point analysis of sand dust collected from the local desert in China confirmed that the fine fragments of sand, which may be lifted and transported over a long distance, are considerably inhomogeneous in elemental component.  相似文献   
22.
采用直锥变截面式Φ74mm分离式霍普金森压杆,对不同替代率沙漠砂混凝土进行冲击压缩实验,得到了不同替代率沙漠砂混凝土在不同应变率下的应力应变曲线。分析应变率对沙漠砂混凝土峰值应力、峰值应变和比能量影响,揭示了沙漠砂替代率对沙漠砂混凝土峰值应力影响规律,并对沙漠砂混凝土动态破坏模式进行研究。研究表明:随着应变率增加,沙漠砂混凝土峰值应力、强度增强因子、比能量和峰值应变逐渐增大;在同一应变率下,随着替代率增加,沙漠砂混凝土峰值应力逐渐减小。本文研究结果可为沙漠砂在工程中的应用提供指导和借鉴。  相似文献   
23.
Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis of rock varnish. This thinly laminated and compositionally complex veneer forms slowly over time on rock surfaces in dryland regions and is particularly abundant across the Mojave Desert climatic region of east-central California (USA). Following the depth profiling examination of a varnished clast from colluvial gravel in Death Valley in the laboratory, our in situ analysis of rock varnish and visually similar coatings on rock surfaces was undertaken in the Owens and Deep Spring valleys in two contexts, element detection/identification and microchemical mapping. Emission peaks were recognized in the LIBS spectra for the nine elements most abundant in rock varnish—Mn, Fe, Si, Al, Na, Mg, K, Ca and Ba, as well as for H, Li, C, O, Ti, V, Sr and Rb. Focused follow-up laboratory and field studies will help understand rock varnish formation and its utility for weathering and chronological studies.  相似文献   
24.
To investigate the soiling behavior of solar energy systems like photovoltaics or concentrated solar power, glass samples were exposed to outdoor conditions in Doha, Qatar for one month. Soil formation on the glass was characterized at microstructural level using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, elemental analysis of the crust was done with energy‐dispersive X‐ray spectroscopy (EDX). Small fibrous structures were found on the glass surface and dust particles, providing evidence of a cementation process leading to a strong adhesion of airborne dust particles. In contrast to the common perception, that cementation occurs via the precipitation of salt (sodium chloride) these needle structures were found to be mainly composed of oxides of Si, Mg and Al. This indicates that cementation processes in desert regions are enhanced by the growth of fibrous clay minerals.

Cross section of cemented dust particle, connected via small needles to the glass surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号