首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1275篇
  免费   58篇
  国内免费   61篇
化学   810篇
晶体学   63篇
力学   33篇
综合类   13篇
数学   23篇
物理学   452篇
  2024年   1篇
  2023年   11篇
  2022年   36篇
  2021年   21篇
  2020年   32篇
  2019年   29篇
  2018年   31篇
  2017年   33篇
  2016年   51篇
  2015年   35篇
  2014年   63篇
  2013年   118篇
  2012年   51篇
  2011年   96篇
  2010年   66篇
  2009年   93篇
  2008年   85篇
  2007年   104篇
  2006年   95篇
  2005年   62篇
  2004年   61篇
  2003年   51篇
  2002年   33篇
  2001年   17篇
  2000年   31篇
  1999年   9篇
  1998年   11篇
  1997年   17篇
  1996年   10篇
  1995年   11篇
  1994年   13篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1981年   1篇
排序方式: 共有1394条查询结果,搜索用时 15 毫秒
51.
Zinc-cobalt molybdate composites (Zn1–xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) were synthesised by a simple co-precipitation method and characterised by thermogravimetric/differential thermal analysis (TG/DTA), Fourier transform-infrared (FT-IR), Fourier transform Raman (FT-Raman) spectroscopy, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM/EDAX) and transmission electron microscopy (TEM). The surface area was calculated by BET analysis in the adsorption/desorption isotherm. The humidity sensing properties of zinc-cobalt molybdates were tested by dc electrical measurements at different relative humidity environments (RH = 5–98%). The electrical resistance of the composites linearly decreases and the maximum sensitivity of 3672 ± 110 was observed for the Zn0.3Co0.7MoO4 (ZnCM-4) composite towards humidity, which is calculated by the relation Sf = R5%/R98%, where the response time is 200 s and the recovery time is 100 s. Photoluminescence (PL) measurement at the room temperature of ZnM-1 composite exhibited a blue emission peak at 475 nm (λem) when excited at a wavelength (λex) of 430 nm. During Co2+ substitution in Zn2+ matrix, a green and red emission peak was observed when excited at a wavelength (λex) of 520 nm.  相似文献   
52.
Nickel(II) complexes of N-(di-alkyl-carbamothioyl)-4-nitrobenzamide (alkyl?=?ethyl or n-propyl) have been synthesized and characterized by infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, and mass spectrometry. The structures of bis[N-(diethylcarbamothioyl)-4-nitrobenzamide]nickel(II) (2a) and bis[N-(dipropylcarbamothioyl)-4-nitrobenzamide]nickel(II) (2b) have been determined by X-ray crystallography. FTIR and NMR of the nickel complexes showed the absence of the N–H proton resonance and the N–H stretch and shift of ν C=O and ν C=S as expected. Both complexes have been used as single-source precursors for the deposition of nickel sulfide nanostructured thin films by aerosol-assisted chemical vapor deposition. The nanostructured thin films were characterized by X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and atomic force microscopy.  相似文献   
53.
The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples.  相似文献   
54.
Thermal analyses, using differential scanning calorimetry (DSC) and dilatometry, reveal an important anomaly at low temperature for Au-25 wt.% Cu composition after homogenization at 700°C during 2 hours under vacuum followed by heating up to 160°C before water quenching. This anomaly has been already observed and not explained. Surface characterization, using scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM), exhibits a specific topography, consisting of a nanostructured surface. The precipitates of nanostructured particles are homogeneously scattered all over the surface for this 18-carat gold alloy. Moreover, X-ray photoelectron spectroscopy (XPS) shows that the composition of the observed particles corresponds to cuprous oxide phase (Cu2O). The formation of such material can be explained by the diffusion of copper atoms from the lattice to the surface at 160°C. Pulsed radio-frequency glow discharge optical emission spectroscopy (RF GD-OES) further proves the proposed Cu2O formation through a diffusion process. The appearance of such cuprous oxide nanoparticles on the Au-Cu alloy surface explains the low-temperature DSC and dilatometry anomaly and affects directly the surface electrical resistance at low temperature. These results might open a large gate for new ideas to investigate in catalytic, electronic, and antimicrobial activities.  相似文献   
55.
We investigated the adsorption of heavy metal ions on a nanostructured coating of zinc-aluminum layered double hydroxides (Zn-Al LDHs) grown on aluminum foam by one-step hydrothermal process. This approach aimed to increase the interactive surface and provide a more practical medium for removal of toxic heavy metals from aqueous media. The foam coated with LDH was characterized by using scanning electron microscopy and X-ray diffraction. After immersion in a copper-rich water solution, X-ray photoelectron spectroscopy demonstrated the occurrence of adsorbed copper on the LDH-coated foam with two oxidation states: particles of metallic copper Cu0 with oxidized surface Cu+1. X-ray diffraction showed the presence of Cu+2 in the LDH structure.  相似文献   
56.
Ethylene Propylene Diene Monomer (EPDM) rubber emerges as a dominant elastomer for major engineering applications like automobiles, constructions, electric and electronic industries and many more. The major engineering properties of EPDM are its outstanding heat, ozone and weather resistance ability. The resistance to polar substances and steam is also good. EPDM rubber has a common use as seals in automobiles.In the present work friction and sliding wear behaviors of ethylene propylene diene monomer rubbers (EPDM) of different hardness have been studied against steel counterpart under dry working condition. Different hardness of EPDM have been achieved by adding different proportion (parts per hundred) of carbon black (CB) content with the main ingredients of EPDM. Tribo-testing has been carried out in a multi tribo-tester (Ducom, India). EPDM rubber of different hardness like 55 Å, 70 Å and 85 Å has been slid against EN-8 stainless steel roller of the tester. Experiments have been conducted with different rotational speeds of the wheel at a constant load of 25N for a constant duration of 900 s. The coefficient of friction (COF), mass loss and wear of EPDM rubbers have been determined from the test data. The worn surface morphology has also been studied using scanning electron microscope (SEM) and concluded accordingly.Present experimental work attempts to highlight some important tribo-characteristics of an indigenous EPDM rubber as well as to shed light on various possible areas of further research works.  相似文献   
57.
Rigid polyurethane foams with up to 50 wt% of microcapsules from LDPE-EVA containing Rubitherm®RT27 were synthesized. The influence of microcapsules on the foams density, microstructure and mechanical resistance was studied. Cell size and strut and wall thicknesses were analyzed by SEM. The relationships between densities and foam microstructures with their Young's moduli and collapse stress were found by the Gibson and Ashby formulations and the Kerner equation for mechanical properties of composites. It was found a cell structure change from polyhedral closed-cells to spherical or amorphous open-cells. A good agreement between the experimental and theoretical data was observed but requiring a cell form factor. Thus, Fitting parameters confirmed the high trend of these microcapsules to be incorporated into the foam cell walls and the form factors depicted the abrupt change of cell morphology. Thus, these equations are suitable for predicting the mechanical properties of foams containing fillers of low mechanical resistance.  相似文献   
58.
The structure and formation of polyethylene (PE) particles on supported titanium–magnesium catalysts having different structural characteristics (sizes of microcrystallites, mesopores, and subparticles) were studied for the first time. Scanning electron microscopy was used to identify structural elements of the polymer particles formed over such catalysts and to reveal morphological changes in the growing polymer particles when the yield was increased from approximately 0.2 g PE/g catalyst to approximately 13 kg PE/g catalyst. A relationship was found between structural characteristics of the porous catalyst particles, morphology of the nascent polymer particles, and bulk density of the polymer powder. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2298–2308  相似文献   
59.
《Analytical letters》2012,45(4):314-329
In the last 10 years researchers have adapted a number of instrumental techniques for studying various aspects of historical inks that have been used in historical documents. In this paper, the applications of atomic spectroscopy such as GFAAS, ICP-MS, XRF, PIXE, and XANES are described for identifying and quantifying metals that are found in historical inks. Applications of vibrational spectroscopy, primarily Raman and near/mid-IR spectroscopy, are described for detecting organic and inorganic compounds in ink and paper.  相似文献   
60.
The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10?cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10?cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4?±?0.4?GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10?cm axial distance with 15 PFS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号