首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   19篇
  国内免费   4篇
化学   95篇
晶体学   6篇
力学   3篇
数学   1篇
物理学   205篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   3篇
  2011年   5篇
  2010年   14篇
  2009年   43篇
  2008年   57篇
  2007年   33篇
  2006年   32篇
  2005年   22篇
  2004年   11篇
  2003年   7篇
  2002年   20篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1969年   1篇
排序方式: 共有310条查询结果,搜索用时 15 毫秒
31.
An elongational flow technique was used to determine the effect of counterions on the chain conformation of polyelectrolyte molecules in solution, by means of the extensibility of the chains in the flow field. It is demonstrated that adding excess cations of seven low molecular weight salts, NaCl, CaCl2, BaCl2, SrCl2, MgCl2, AlCl3, and SnCl4, to a very dilute solution of fully sulphonated polystyrene (NaPSS) reduces the extensibility of the chains, that is, the facility by which a chain can be extended to varying degrees, an effect associated with chain contractions. In the case of multivalent counterions, these contractions, which with monovalent counterions are primarily due to screening of charges by excess counterions, are greatly enhanced, which we attribute to the formation of intramolecular ionic bridges. When, in the case of multivalent counterions, the polymer concentration is increased, in inversion of the effect, namely increase in chain extensibility on addition of ions, is observed. We attribute this latter effect to the ionic bridges becoming increasingly intermolecular, leading to effectively large molecules, and eventually to a gel. All these effects were accentuated with increase in valency. They could also be accompanied by precipitation which were of two kinds: one due to formation of insoluble ionic associations and a second attributable to enhanced hydrophobic interaction within the contracted chain itself. © 1994 John Wiley & Sons, Inc.  相似文献   
32.
Dan Bai 《Applied Surface Science》2010,256(8):2643-1994
Free-standing multiwall carbon nanotubes (MWNTs) films were coated, using chemical vapor deposition method, with a thin layer of nanostructural ZnO. The morphology and crystal structure of the as-grown products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman scattering analyses. Field emission (FE) results demonstrated that the needle-like and spherical ZnO-MWNTs composite structure films possessed good performance with a turn-on field of 1.3, 2.2 V μm−1 and a threshold field of 2.6, 4.5 V μm−1, respectively. The glucose-sensing characteristic has also been studied. The multi-layer electrode (PDDA/GOx/ZnO/MWNTs) exhibited significant electrocatalysis to the oxidation and reduction of H2O2 than the PDDA/GOx/MWNTs electrode, which provided wide potential applications in clinical, environmental, and food analysis.  相似文献   
33.
Intrinsic, P- and B-doped hydrogenated amorphous silicon thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited samples were thermally annealed at the temperature of 800 °C to obtain the doped nanocrystalline silicon (nc-Si) films. The microstructures, optical and electronic properties have been evaluated for the undoped and doped nanocrystalline films. X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the substitutional boron and phosphorous in the doped films. It was found that thermal annealing can efficiently activate the dopants in films accompanying with formation of nc-Si grains. Based on the temperature-dependent conductivity measurements, it was shown that the activation of dopant by annealing increased the room temperature dark conductivity from 3.4 × 10−4 S cm−1 to 5.3 S cm−1 for the P-doped films and from 1.28 × 10−3 S cm−1 to 130 S cm−1 for the B-doped films. Meanwhile, the corresponding value of conductivity activation energies was decreased from 0.29 eV to 0.03 eV for the P-doped films and from 0.3 eV to 5.6 × 10−5 eV for the B-doped films, which indicated the doped nc-Si films with high conductivity can be achieved with the present approach.  相似文献   
34.
F.G. Mitri 《Annals of Physics》2008,323(7):1604-1620
Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments.  相似文献   
35.
The Gd doped ceria (CGO) in thin layers is of great interest for low temperature operation. In the present investigation, we report on the use of spray pyrolysis technique for the synthesis of CGO thin films. The process parameters were optimized for synthesizing Gd0.1Ce0.9O1.95 films. Films were characterized by XRD, EDS, SEM, and AFM and are observed to be phase pure and dense with surface roughness of the order of ∼5 nm. The d.c. conductivity was also measured and is observed to be ∼0.5 S/cm at 623 K.  相似文献   
36.
We study a model based on precursor mechanism for CO-NO catalytic reaction on square lattice with Monte Carlo simulation. The precursor mechanism clearly demonstrates its impact on the phase diagram. The steady reactive state (SRS) gets established. The width of reactive region increases by increasing the range of precursor mobility. When the precursor mobility is increased to third-nearest neighbourhood, the second-order transition disappears.  相似文献   
37.
Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From thesimulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearlyself-sustained mechanism of detonations and finally lead to cell bifurcations.  相似文献   
38.
Co2Z hexaferrite Ba3Co2Fe24O41 was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 °C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 °C and the Y-type ferrite at 1230 °C. The Z-type material has its stability interval between 1300 and 1350 °C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 °C, intermediate grinding and sintering at 1330 °C. The permeability of Co2Z-type ferrite of about μ=20 is stable up to several 100 MHz, with maximum losses μ′′ around 700 MHz. Addition of 3 wt% Bi2O3 as sintering aid shifts the temperature of maximum shrinkage down to 950 °C and enables sintering of Z-type ferrite powders at 950 °C. However, the permeability is reduced to μ=3. It is shown here for the first time that Co2Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co2Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 °C.  相似文献   
39.
The presence of shear bands in the deformed material before final annealing is very important for Goss and Cube textures formation in silicon steel [S.C. Paolinelli, M.A. Cunha, J. Magn. Magn. Mater. 255 (2003) pp. 379. [1]; J.T. Park, J.A. Szpunar, Acta Mater., 51 (2003) 3037. [2]]. The increase of the hot-band grain size can increase the number of shear bands, which favor the nucleation of these orientations. In this work, the effect of the hot band grain size variation, promoted by varying the hot rolling finishing temperature, on final structure and magnetic properties was investigated for 3% Si alloy. It was found that the increase of the hot-band grain size increases the occurrence of shear bands and promotes an increase of η fiber fraction and a reduction of γ fiber fraction, improving the magnetic induction. On the other hand, the final grain size is reduced when the hot-band grain size is larger than 190 μm, deteriorating the core loss values in spite of the texture benefits. The reduction of final grain size was explained by the increase of the number of nuclei at the beginning of the recrystallization caused by the increase of shear bands in the deformed material.  相似文献   
40.
Jin Sun  Liang Li  Lei Li  Meiling Ruan 《Journal of Non》2008,354(32):3799-3805
Amino and carboxylic groups functionalized mesoporous bioactive glasses (denoted as N-MBGs and C-MBGs, respectively) were successfully synthesized through a post-grafting process and characterized by XRD, N2 sorption, TEM, FT-IR and TG techniques. Their in vitro bioactivity and degradation behavior were investigated in simulated body fluid and examined by various techniques. The results demonstrate that the bioactivity of all the samples and the morphology of carbonated hydroxyapatite were affected remarkably by the introduction of functional groups. Spherical carbonated hydroxyapatite particles were observed grown on the N-MBGs surfaces after soaking in simulated body fluid for 8 h, which is different from the rod-like carbonated hydroxyapatite grown on conventional mesoporous bioactive glasses. While for C-MBGs, the nucleation and growth rate of carbonated hydroxyapatite was decreased at increased contents of carboxylic groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号