首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24322篇
  免费   2857篇
  国内免费   3266篇
化学   9711篇
晶体学   104篇
力学   2026篇
综合类   178篇
数学   7739篇
物理学   10687篇
  2024年   76篇
  2023年   255篇
  2022年   546篇
  2021年   593篇
  2020年   755篇
  2019年   701篇
  2018年   704篇
  2017年   790篇
  2016年   944篇
  2015年   835篇
  2014年   1213篇
  2013年   2031篇
  2012年   1308篇
  2011年   1556篇
  2010年   1218篇
  2009年   1581篇
  2008年   1628篇
  2007年   1675篇
  2006年   1396篇
  2005年   1186篇
  2004年   963篇
  2003年   980篇
  2002年   914篇
  2001年   723篇
  2000年   736篇
  1999年   619篇
  1998年   563篇
  1997年   429篇
  1996年   293篇
  1995年   285篇
  1994年   237篇
  1993年   236篇
  1992年   223篇
  1991年   182篇
  1990年   200篇
  1989年   190篇
  1988年   166篇
  1987年   167篇
  1986年   139篇
  1985年   141篇
  1984年   139篇
  1983年   79篇
  1982年   112篇
  1981年   106篇
  1980年   94篇
  1979年   98篇
  1978年   77篇
  1977年   76篇
  1976年   70篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
吴文鹏  曹艳 《化学研究》2014,25(6):609-615
用密度泛函理论优化了三苯甲烷(1)和一系列三(4-硝基苯基)甲烷衍生物2,3和4的几何结构,并计算了其红外光谱和拉曼光谱;通过与实验光谱的对比,对实验光谱中的谱峰进行了指认,并从理论上纠正了部分对3和4红外光谱谱峰不合适的实验指认;同时预测了2,3和4的拉曼光谱.结果表明,几种化合物的振动光谱计算结果与相应的实验结果吻合良好;且化合物2,3和4的拉曼光谱具有相似性.  相似文献   
992.
Pyrite acts as a catalyst in the mineral processing, and the speed of ferric ion reduction and mineral decomposition increases with increasing cathodic points. In this study, the ferric ion interaction on the (100) and (110) surfaces of pyrite was studied using the density functional theory calculations. The analysis of stability, density of states, and electron density were performed to understand the interaction between the ferric ion and pyrite surfaces. The results showed that pyrite surface is chemically active and tends to absorb ferric ion between two surface sulfur atoms. The hyperconjugation between the 3d orbital of ferric ion and the 3p or 3d orbitals of surface atoms provides the conditions for the Fe3+ ion adsorption. The molecular orbital (MO) and electron density analyses indicate that the 3p orbitals of S atoms play a more important role in bonds formations relative to the 3d orbitals. The (110) surface is more active, and the adsorption energy is larger than that of surface (100), which is the result of decreased cation coordination and the presence of sulfur at the surface. Subsequently, the interaction of the Fe2+ ion, as product of Fe3+ ion reduction and its competitor for adsorption, on the surfaces was studied. The Fe2 + ion adsorbs stronger at the surface of (110), and the adsorption energies at (100) and (110) surfaces were obtained as −24 and −47 kcal/mol, respectively. In general, the Fe3+ ion is a stronger oxidizing agent than Fe2+ on pyrite surfaces.  相似文献   
993.
This paper is concerned with the experimental testing and the constitutive modelling of a thermoplastic microcellular polyethylene-terephthalate (MC-PET) foam on the temperature range of 21–210 °C in order to investigate the temperature-dependent performance of the applied parallel viscoelastic-viscoplastic material model. By means of carefully designed uniaxial mechanical tests in temperature chamber, the viscous, elastic and yielding behaviours of the investigated material are identified, which are then applied for selecting suitable viscoelastic-viscoplastic constitutive models. The material characterization process is conducted using finite-element-based fitting method, including also the analysis of the applied numerical optimization algorithm. The fitting results are used to analyse the parameter sensitivity and to propose closed-form analytical relations for the temperature dependency of the material parameters. Finally, the utilisation of the analytical temperature functions for speeding up the parameter-fitting process is also demonstrated.  相似文献   
994.
Density functional theory has been used to study the biologically important coenzyme NADPH and its oxidized form NADP+. It was found that free NADPH prefers a compact structure in gas phase and exists in more extended geometries in aqueous solution. Ultraviolet–visible absorption spectra in aqueous solution were calculated for NADPH with an explicit treatment of 100 surrounding water molecules in combination with the COSMO solvation model for bulk hydration effects. The obtained spectra using the B3LYP hybrid density functional agree quite well with experimental data. The changes of Gibbs free energies ΔG in reactions of NADPH with O2 observed experimentally in cardiovascular and in chemical systems, that is, NADPH + 2 3O2 → NADP+ + 2 O2 + H+ and NADPH + 1O2 + H+ → NADP+ + H2O2, respectively, were calculated. The NADPH oxidation reaction in the cardiovascular system cannot proceed without activation since the obtained ΔG is positive. The reaction of NADPH in the chemical system with singlet oxygen was found to proceed in two ways, each consisting of two steps, that is, NADPH firstly reacts with 1O2 barrierlessly to form NADP+ and HO2, from which H2O2 is formed in a spontaneous reaction with H+, or 1O2 and H+ initially form 1HO2+, which further reacts with NADPH to yield NADP+ and H2O2. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
995.
We present PyCDFT, a Python package to compute diabatic states using constrained density functional theory (CDFT). PyCDFT provides an object-oriented, customizable implementation of CDFT, and allows for both single-point self-consistent-field calculations and geometry optimizations. PyCDFT is designed to interface with existing density functional theory (DFT) codes to perform CDFT calculations where constraint potentials are added to the Kohn–Sham Hamiltonian. Here, we demonstrate the use of PyCDFT by performing calculations with a massively parallel first-principles molecular dynamics code, Qbox, and we benchmark its accuracy by computing the electronic coupling between diabatic states for a set of organic molecules. We show that PyCDFT yields results in agreement with existing implementations and is a robust and flexible package for performing CDFT calculations. The program is available at https://dx.doi.org/10.5281/zenodo.3821097 .  相似文献   
996.
Thermal storage and transfer fluids have important applications in industrial, transportation, and domestic settings. Current thermal fluids have relatively low specific heats, often significantly below that of water. However, by introducing a thermochemical reaction to a base fluid, it is possible to enhance the fluid's thermal properties. In this work, density functional theory (DFT) is used to screen Diels–Alder reactions for use in aqueous thermal fluids. From an initial set of 52 reactions, four are identified with moderate aqueous solubility and predicted turning temperature near the liquid region of water. These reactions are selectively modified through 60 total functional group substitutions to produce novel reactions with improved solubility and thermal properties. Among the reactions generated by functional group substitution, seven have promising predicted thermal properties, significantly improving specific heat (by as much as 30.5%) and energy storage density (by as much as 4.9%) compared to pure water.  相似文献   
997.
Hexamethyldisiloxane [HMDSO, (CH3)3-SiOSi-(CH3)3] is an important precursor for SiO2 formation during flame-based silica material synthesis. As a result, HMDSO reactions in flame have been widely investigated experimentally, and many results have indicated that HMDSO decomposition reactions occur very early in this process. In this paper, quantum chemical calculations are performed to identify the initial decomposition of HMDSO and its subsequent reactions using the density functional theory at the level of B3LYP/6-311+G (d, p). Four reaction pathways—(a) Si O bond dissociation of HMDSO, (b) Si C bond dissociation of HMDSO, (c) dissociation and recombination of Si O and Si C bonds, and (d) elimination of a methane molecule from HMDSO—have been examined and identified. From the results, it is found that the barrier of 84.38 kcal/mol and Si O bond dissociation energy of 21.55 kcal/mol are required for the initial decomposition reaction of HMDSO in the first pathway, but the highest free energy barrier (100.69 kcal/mol) is found in the third reaction pathway. By comparing the free energy barriers and reaction rate constants, it is concluded that the most possible initial decomposition reaction of HMDSO is to eliminate the CH3 radical by Si C bond dissociation.  相似文献   
998.
Highly spin-polarized ferromagnetic materials are essential for efficient spintronic devices. Here, 100% spin-polarized compounds Rb2TaZ6 (Z = Cl, Br) studied via density functional theory are reported. These compounds show stability in the ferromagnetic phase with cubic symmetry and half metallic behavior, thereby exhibiting a nonzero direct band gap in the spin-down channel and zero band gap in the spin-up configuration. The Ta-d sates contribute mainly to the net magnetic moments as explained by the crystal field theory and density of states. High Curie temperatures of 960.35 and 1021.74 K for Ra2TaCl6 and Rb2TaBr6, along with maximum spin polarizability, make these compounds favorable for efficient spintronic applications.  相似文献   
999.
1000.
We have investigated the stepwise addition of four growing methyl methacrylate (MMA) radicals to C60 fullerene, taking into account all possible types of the formed adducts. This reaction set is a reliable approximation for understanding the MMA polymerization process in the presence of C60 fullerene. We have analyzed the structures of the fullerene-MMA adducts and energy parameters of their formation (heat effects and activation enthalpies). We found that up to three MMA growing radicals are favorably attached to C60 as the fullerene-MMA trisadduct is a stable radical of the allyl type. It is inactive for further radical addition, and the elimination of the hydrogen atom from the growing MMA radical becomes preferable. The effects of steric factors and structures of the products of multiple growing MMA radical additions to C60 on the radical polymerization of MMA in the presence of C60 fullerene are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号