首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   963篇
  免费   31篇
  国内免费   27篇
化学   198篇
晶体学   8篇
力学   393篇
综合类   4篇
数学   149篇
物理学   269篇
  2023年   10篇
  2022年   6篇
  2021年   12篇
  2020年   7篇
  2019年   11篇
  2018年   14篇
  2017年   20篇
  2016年   27篇
  2015年   20篇
  2014年   47篇
  2013年   64篇
  2012年   26篇
  2011年   73篇
  2010年   44篇
  2009年   71篇
  2008年   56篇
  2007年   82篇
  2006年   75篇
  2005年   52篇
  2004年   67篇
  2003年   41篇
  2002年   18篇
  2001年   19篇
  2000年   16篇
  1999年   17篇
  1998年   18篇
  1997年   16篇
  1996年   10篇
  1995年   11篇
  1994年   14篇
  1993年   12篇
  1992年   8篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1021条查询结果,搜索用时 15 毫秒
91.
An improved version of the four-hole directional pressure probe, or Cobra probe, is described, in which the frequency response has been extended to 1.5 kHz. The probe measures all three orthogonal mean and turbulent velocity components at a point in the flow field. The probe also resolves the local mean and turbulent components of static pressure, allowing moments between the fluctuating velocity components and pressure to be determined. The techniques developed to allow the improved frequency response and the use of the probe in turbulent, developed pipe flow (a calibration flow) are described. Also given are the turbulent pressure-velocity correlations, which show a high degree of anticorrelation for one velocity component.  相似文献   
92.
This paper presents micromechanics based analysis of elastic strain and changes in the texture of poled polycrystalline ferroelectric PZT ceramics for direct comparison with synchrotron X-ray measurements. The grains are modelled as spherical inclusions, to which transformation strains are assigned depending on the fractions of different ferroelectric domains. Eshelby's inclusion problem with the classical self-consistent method is applied to evaluate the elastic state of the grains. In particular, the elongation due to lattice elastic strain is calculated as a function of inclination Ψ relative to the polar axis. The ratio of diffraction peak intensities, corresponding to the domain fractions, is also expressed as a function of Ψ. This analysis identifies the special character of the reflection, for which the lattice strain along in the stress free state is independent of ferroelectric domain population and hence unaffected by poling. The elongation due to the lattice strain parallel to and peak intensity ratio are expressed in terms of the overall macroscopic strain of a poled specimen, each having a dependence.  相似文献   
93.
混凝土三参数统一强度理论在Haigh-Westgaard空间的偏平面上的边界线为十二边形,通过调整中间主应力的影响系数消除角点的奇异性,根据相关流动准则推导基于标量损伤的弹塑性本构方程,考虑了混凝土材料的随动强化效应,结合塑性损伤理论给出了应力计算的数值方法,编制了相应的Fortran语言程序,并将其用于钢管混凝土构件承载能力的计算,计算结果验证了所用模型的预测能力。  相似文献   
94.
Based on von Mises’ yield criterion, deformation theory of plasticity and Swift’s hardening law, elasto-plastic deformation of variable thickness annular disks subjected to external pressure is studied. A nonlinear shooting method using Newton’s iterations with numerically approximated tangent is designed for the solution of the problem. Considering a thickness profile in the form of a general parabolic function, the condition of occurrence of plastic deformation at the inner and outer edges of the annular disk is investigated. A critical disk profile is determined and the corresponding elastic–plastic stresses as well as the residual stress distribution upon removal of the applied pressure are computed and discussed.  相似文献   
95.
The purpose of this research is to investigate the effects of material inhomogeneity on the response of linearly elastic isotropic solid circular disks or cylinders, rotating at constant angular velocity about a central axis. The work is motivated by the recent research activity on functionally graded materials (FGMs), i.e., materials with spatially varying properties tailored to satisfy particular engineering applications. The analog of the classic problem for a homogeneous isotropic rotating solid disk or cylinder is considered. The special case of a body with Young"s modulus depending on the radial coordinate only, and with constant Poisson"s ratio, is examined. For the case when the Young"s modulus has a power-law dependence on the radial coordinate, explicit exact solutions are obtained. It is shown that the stress response of the inhomogeneous disk (or cylinder) is significantly different from that of the homogeneous body. For example, the maximum radial and hoop stresses do not, in general, occur at the center as in the case for the homogeneous material. Furthermore, for the case where the Young"s modulus increases with radial distance from the center, it is shown that radially symmetric solutions exist provided the rate of growth of the Young"s modulus is, at most, cubic in the radial variable. It is also shown for the general inhomogeneous isotropic case how the material inhomogeneity may be tailored so that the radial and hoop stress are identical throughout the disk. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
96.
In recent years, the hole drilling method for determining residual stresses has been implemented with optical methods such as holographic interferometry and ESPI to overcome certain limitations of the strain rosette version of hole drilling. Although offering advantages, the interferometric methods require vibration isolation, a significant drawback to their use outside of the laboratory. In this study, a 3D image correlation approach was used to measure micron-sized surface displacements caused by the localized stress relief associated with hole drilling. Residual stresses were then found from the displacements using non-dimensional relations previously derived by finite element analysis. A major advantage of image correlation is that it does not require interferometric vibration isolation. Experiments were performed to check the ability of this new approach for uniaxial and equi-biaxial states of stress. Stresses determined by the approach were in good agreement with computed values and those determined by hole drilling using holographic interferometry.  相似文献   
97.
Within the elasticity formulation the most general displacement field for hygrothermal problems of long laminated composite plates is presented. The equivalent single-layer theories are then employed to determine the global deformation parameters appearing in the displacement fields of general cross-ply, symmetric, and antisymmetric angle-ply laminates under thermal and hygroscopic loadings. Reddy’s layerwise theory is subsequently used to determine the local deformation parameters of various displacement fields. An elasticity solution is also developed in order to validate the efficiency and accuracy of the layerwise theory in predicting the interlaminar normal and shear stress distributions. Finally, various numerical results are presented for edge-effect problems of several cross-ply, symmetric, and antisymmetric angle-ply laminates subjected to uniform hygrothermal loads. All results indicate high stress gradients of interlaminar normal and shear stresses near the edges of laminates.  相似文献   
98.
An experimental study has been undertaken to investigate the shrinkage characteristics of acrylic-based and epoxy-based stereolithography (SL) photopolymer resin systems after they have been laser cured and post-cured under ultraviolet (UV), and thermal exposure. The induced residual stresses and strains were determined by the shadow moiré and the hole-drilling strain-gage methods. Out-of-plane displacements (warpage) of acrylic-based post-cured resin plates were recorded by means of the shadow moiré method and correlated to the shrinkage strains by theoretical analysis. The induced residual stresses in the epoxy-based cylindrical resin specimens were determined from strains of three-element strain-gage rosettes of the blind-hole drilling method. Results are presented for the shrinkage stresses and strains for both material systems as a function of the post-curing process (UV, thermal). It was found that the shrinkage strains in the acrylic-based photopolymer resin were of considerable magnitude, while thermal post-curing resulted in higher shrinkage stresses for both material systems. The values of the shrinkage stresses compare well with those of the existing literature.  相似文献   
99.
A non-linear algorithm of photoelastic tomography for the measurement of axisymmetric stress fields has been elaborated. It is free of any assumptions concerning the value of the birefringence or rotation of the principal stress axes along the light rays. The algorithm is based on the measurement of characteristic directions and phase retardation in two parallel sections of the test object. Stress components are presented in the form of power series along the radial coordinate. A differential evolution algorithm has been used for finding the stress field parameters, which fit the measurement data best. Application of the method is illustrated by residual stress measurement in a drinking glass.  相似文献   
100.
FEA calculations have been carried out for a model rubber shear spring, consisting of a block of a highly elastic material, bonded between two rigid parallel plates and sheared by displacing one of the plates parallel to the other in its own plane. The block was prevented from deforming in the perpendicular direction, and thus was deformed in plane strain. Stress distributions along the bond-line and the center-line are reported and compared with those expected from the theory of large elastic deformations. Unexpected tensile stresses were found to develop in the interior of the sheared block. They are attributed to the absence on the end surfaces of the stresses needed to maintain a simple shear, causing a pronounced change in the reference pressure—a consequence that is usually overlooked. Because the internal stresses are governed by the boundary conditions, they were strongly affected by the shape of the end surfaces. In addition, they were reduced markedly by assigning values to Poisson's ratio slightly lower than 0.5, thus allowing some volume expansion of the rubber. Strain energy release rates were also evaluated for growth of a crack along the bond-line, starting at the edges, and compared with those reported previously by Lindley and Teo [Energy for crack growth at the bonds of rubber springs, Plast. Rubber Mat. Appl. 4 (1979) 29-37], Muhr et al. [A fracture mechanics study of natural rubber-to-metal bond failure, J. Adhes. Sci. Technol. 10 (1996) 593-616], Gregory and Muhr [Stiffness and fracture analysis of bonded rubber blocks in simple shear, in: D. Boast, V.A. Coveny (Eds.), Finite Element Analysis of Elastomers, Professional Engineering Publications, Bury St. Edmunds, UK, 1999, pp. 265-274] and Gough and Muhr [Initiation of failure of rubber close to bondlines, in: Proceedings of the International Rubber Conference, Maastricht, Netherlands, June 2005, IOM Communications Ltd., London, 2005, pp. 165-174]. They confirm that a long crack at the compression edge will grow faster than one at the tension edge, but the results for short cracks were inconclusive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号