首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65528篇
  免费   5275篇
  国内免费   5346篇
化学   37969篇
晶体学   383篇
力学   4955篇
综合类   745篇
数学   9250篇
物理学   22847篇
  2024年   129篇
  2023年   670篇
  2022年   2467篇
  2021年   2281篇
  2020年   1724篇
  2019年   1761篇
  2018年   1363篇
  2017年   1616篇
  2016年   2007篇
  2015年   1959篇
  2014年   2603篇
  2013年   4681篇
  2012年   2912篇
  2011年   3597篇
  2010年   3034篇
  2009年   3793篇
  2008年   3865篇
  2007年   4064篇
  2006年   3243篇
  2005年   2404篇
  2004年   2102篇
  2003年   1987篇
  2002年   4387篇
  2001年   1977篇
  2000年   1510篇
  1999年   1295篇
  1998年   1239篇
  1997年   898篇
  1996年   924篇
  1995年   849篇
  1994年   798篇
  1993年   768篇
  1992年   705篇
  1991年   517篇
  1990年   436篇
  1989年   373篇
  1988年   378篇
  1987年   291篇
  1986年   277篇
  1985年   389篇
  1984年   296篇
  1983年   196篇
  1982年   350篇
  1981年   509篇
  1980年   455篇
  1979年   504篇
  1978年   400篇
  1977年   312篇
  1976年   261篇
  1973年   208篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
We study von Karman evolution equations with non-linear dissipation and with partially clamped and partially free boundary conditions. Two distinctive mechanisms of dissipation are considered: (i) internal dissipation generated by non-linear operator, and (ii) boundary dissipation generated by shear forces friction acting on a free part of the boundary. The main emphasis is given to the effects of boundary dissipation. Under suitable hypotheses we prove existence of a compact global attractor and finiteness of its fractal dimension. We also show that any solution is stabilized to an equilibrium and estimate the rate of the convergence which, in turn, depends on the behaviour at the origin of the functions describing the dissipation.  相似文献   
82.
The authors give a consistent affirmative response to a question of Juhász, Soukup and Szentmiklóssy: If GCH fails, there are (many) extraresolvable, not maximally resolvable Tychonoff spaces. They show also in ZFC that for ω<λ?κ, no maximal λ-independent family of λ-partitions of κ is ω-resolvable. In topological language, that theorem translates to this: A dense, ω-resolvable subset of a space of the form (DI(λ)) is λ-resolvable.  相似文献   
83.
We define a q-chromatic function and q-dichromate on graphs and compare it with existing graph functions. Then we study in more detail the class of general chordal graphs. This is partly motivated by the graph isomorphism problem. Finally we relate the q-chromatic function to the colored Jones function of knots. This leads to a curious expression of the colored Jones function of a knot diagram K as a chromatic operator applied to a power series whose coefficients are linear combinations of long chord diagrams. Chromatic operators are directly related to weight systems by the work of Chmutov, Duzhin, Lando and Noble, Welsh.  相似文献   
84.
Many recent algorithmic approaches involve the construction of a differential equation model for computational purposes, typically by introducing an artificial time variable. The actual computational model involves a discretization of the now time-dependent differential system, usually employing forward Euler. The resulting dynamics of such an algorithm is then a discrete dynamics, and it is expected to be “close enough” to the dynamics of the continuous system (which is typically easier to analyze) provided that small – hence many – time steps, or iterations, are taken. Indeed, recent papers in inverse problems and image processing routinely report results requiring thousands of iterations to converge. This makes one wonder if and how the computational modeling process can be improved to better reflect the actual properties sought. In this article we elaborate on several problem instances that illustrate the above observations. Algorithms may often lend themselves to a dual interpretation, in terms of a simply discretized differential equation with artificial time and in terms of a simple optimization algorithm; such a dual interpretation can be advantageous. We show how a broader computational modeling approach may possibly lead to algorithms with improved efficiency. AMS subject classification (2000)  65L05, 65M32, 65N21, 65N22, 65D18  相似文献   
85.
This paper deals with the existence of curved front solution of a partial differential equation coming from a mathematical model of stroke. The equation is of reaction-diffusion type in a cylinder of radius R and of diffusion and absorption type outside of the cylinder. We prove the nonexistence of a travelling front when R is small enough and the existence if R is large enough using a recent energy method. We construct the travelling front as the limit in time of a solution with a well-chosen initial condition, in a travelling referential.  相似文献   
86.
Quantitative H–Al distances in acid sites of two zeolites with MFI and IFR framework topology were obtained by numerical simulation of 1H{27Al} rotational echo adiabatic passage double resonance (REAPDOR) experiments. A 27Al offset-dependent data set yields for each resolved 1H NMR line a corresponding nuclear electric quadrupole coupling constant of the neighboring 27Al site. This information is used for analyzing a second data set for on-resonance irradiation, where the dipolar evolution time (number of rotor cycles) was varied, to yield the 1H–27Al dipolar coupling constant. Numerical simulations indicate that the REAPDOR method does not depend significantly on the polar angles, defining the orientation of the electric field gradient tensor of 27Al with respect to the Al–H dipolar vector. In contrast, the transfer of populations in double resonance sequence is sensitive to these angles, and it can be thus used to measure them.  相似文献   
87.
Tailored scaling represents a principle of success that, both in nature and in technology, allows the effectiveness of physical effects to be enhanced. Mutation and selection in nature are imitated in technology, e.g. by model calculation and design. Proper scaling of dimensions in natural photonic crystals and our fabricated artificial 1D photonic crystals (DBRs, distributed Bragg reflectors) enable efficient diffractive interaction in a specific spectral range. For our optical microsystems we illustrate that tailored miniaturization may also increase the mechanical stability and the effectiveness of spectral tuning by thermal and electrostatic actuation, since the relative significance of the fundamental physical forces involved considerably changes with scaling. These basic physical principles are rigorously applied in micromachined 1.55-μm vertical-resonator-based devices. We modeled, implemented and characterized 1.55-μm micromachined optical filters and vertical-cavity surface-emitting laser devices capable of wide, monotonic and kink-free tuning by a single control parameter. Tuning is achieved by mechanical actuation of one or several air-gaps that are part of the vertical resonator including two ultra-highly reflective DBR mirrors of strong refractive index contrast: (i) Δn=2.17 for InP/air-gap DBRs (3.5 periods) using GaInAs sacrificial layers and (ii) Δn=0.5 for Si3N4/SiO2 DBRs (12 periods) with a polymer sacrificial layer to implement the air-cavity. In semiconductor multiple air-gap filters, a continuous tuning of >8% of the absolute wavelength is obtained. Varying the reverse voltage (U=0–5 V) between the membranes (electrostatic actuation), a tuning range of >110 nm was obtained for a large number of devices. The correlation of the wavelength and the applied voltage is accurately reproducible without any hysteresis. In two filters, tuning of 127 and 130 nm was observed for about ΔU=7 V. The extremely wide tuning range and the very small voltage required are record values to the best of our knowledge. For thermally actuated dielectric filters based on polymer sacrificial layers, Δλ/ΔU=-7 nm/V is found. Received: 10 May 2002 / Published online: 8 August 2002  相似文献   
88.
We have computed electronic structures and total energies of circularly confined two-dimensional quantum dots and their lateral dimers in zero and finite uniform external magnetic fields using different theoretical schemes: the spin-density-functional theory (SDFT), the current-and-spin-density-functional theory (CSDFT), and the variational quantum Monte Carlo (VMC) method. The SDFT and CSDFT calculations employ a recently-developed, symmetry-unrestricted real-space algorithm allowing solutions which break the spin symmetry. Results obtained for a six-electron dot in the weak confinement limit and in zero magnetic field as well as in a moderate confinement and in finite magnetic fields enable us to draw conclusions about the reliability of the more approximative SDFT and CSDFT schemes in comparison with the VMC method. The same is true for results obtained for the two-electron quantum dot dimer as a function of inter-dot distance. The structure and role of the symmetry-breaking solutions appearing in the SDFT and CSDFT calculations for the above systems are discussed. Received 16 October 2001 and Received in final form 17 January 2002  相似文献   
89.
Measurements from depolarized lidars provide a promising method to retrieve both cloud and aerosol properties and a versatile complement to passive satellite-based sensors. For lidar observations of clouds and aerosols, multiple scattering plays an important role in the scattering process. Monte Carlo simulations are carried out to investigate the sensitivity of lidar backscattering depolarization to cloud and aerosol properties. Lidar parameters are chosen to be similar to those of the upcoming space-based CALIPSO lidar. Cases are considered that consist of a single cloud or aerosol layer, as well as a case in which cirrus clouds overlay different types of aerosols. It is demonstrated that besides thermodynamic cloud phase, the depolarized lidar signal may provide additional information on ice or aerosol particle shapes. However, our results show little sensitivity to ice or aerosol particle sizes. Additionally, for the case of multiple but overlapping layers involving both clouds and aerosols, the depolarized lidar contains information that can help identify the particle properties of each layer.  相似文献   
90.
Knowing a probability density (ideally, an invariant density) for the trajectories of a dynamical system allows many significant estimates to be made, from the well-known dynamical invariants such as Lyapunov exponents and mutual information to conditional probabilities which are potentially more suitable for prediction than the single number produced by most predictors. Densities on typical attractors have properties, such as singularity with respect to Lebesgue measure, which make standard density estimators less useful than one would hope. In this paper we present a new method of estimating densities which can smooth in a way that tends to preserve fractal structure down to some level, and that also maintains invariance. We demonstrate with applications to real and artificial data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号