首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2180篇
  免费   273篇
  国内免费   178篇
化学   1095篇
晶体学   70篇
力学   136篇
综合类   7篇
数学   12篇
物理学   1311篇
  2024年   4篇
  2023年   15篇
  2022年   34篇
  2021年   46篇
  2020年   83篇
  2019年   67篇
  2018年   68篇
  2017年   48篇
  2016年   90篇
  2015年   80篇
  2014年   67篇
  2013年   282篇
  2012年   133篇
  2011年   147篇
  2010年   107篇
  2009年   124篇
  2008年   131篇
  2007年   126篇
  2006年   170篇
  2005年   91篇
  2004年   96篇
  2003年   84篇
  2002年   93篇
  2001年   71篇
  2000年   57篇
  1999年   59篇
  1998年   46篇
  1997年   26篇
  1996年   19篇
  1995年   22篇
  1994年   16篇
  1993年   12篇
  1992年   22篇
  1991年   13篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   10篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1973年   3篇
  1959年   1篇
排序方式: 共有2631条查询结果,搜索用时 593 毫秒
941.
Resistivity recovery (RR) data of Cr4 alloy doped with carbon (Cr4C) after irradiation with 5 MeV electrons are presented and compared with RR data of non-doped Cr4 alloy. Analysis of the defect- and short-range order-induced parts of RR has confirmed the proposed earlier scheme of the evolution of Frenkel pair defects on post-irradiation anneal in Cr4 and Cr9. Vacancies start free migration around 205–210?K; however, the related peak of stage III is invisible in conventional RR plots. Interstitials atoms (IAs) trapped in stage I at configurations of several Cr atoms start their long-range migration at 220?K. Migrating vacancies are captured by carbon atoms in Cr4C while IAs are not. Dissociation of vacancies from carbon atoms at 350?K gives rise to a decoration of carbon atoms with Cr atoms. Indications are seen that a release of vacancies captured by atoms of residual nitrogen takes place around 250–260?K.  相似文献   
942.
This paper is concerned with the finite element analysis of boundary value problems involving nonlinear magnetic shape memory behavior, as might be encountered in experimental testing or engineering applications of magnetic shape memory alloys (MSMAs). These investigations mainly focus on two aspects: first, nonlinear magnetostatic analysis, in which the nonlinear magnetic properties of the MSMA are predicted by the phenomenological internal variable model previously developed by Kiefer and Lagoudas, is utilized to investigate the influence of the demagnetization effect on the interpretation of experimental measurements. An iterative procedure is proposed to deduce the true constitutive behavior of MSMAs from experimental data that typically reflect the shape-dependent system response of a sample. Secondly, the common assumption of a homogeneous Cauchy stress distribution in the MSMA sample is tested. This is motivated by the expectation that the influence of magnetic body forces and body couples caused by field matter interactions may not be negligible in MSMAs that exhibit blocking stresses of well below 10?MPa. To this end, inhomogeneous Maxwell stress distributions are first computed in a post-processing step, based on the magnetic field and magnetization distributions obtained in the magnetostatic analysis. Since the computed Maxwell stress fields, though allowing a first estimation of the influence of the magnetic force and couple, do not satisfy equilibrium conditions, a finite element analysis of the coupled field equations is performed in a second step to complete the study. It is found that highly non-uniform Cauchy stress distributions result under the influence of magnetic body forces and couples, with magnitudes of the stress components comparable to externally applied bias stress levels.  相似文献   
943.
Rana Ayub  Naveed Afzal  R. Ahmad 《哲学杂志》2013,93(17):2164-2172
The stress-induced phase transformation characteristics of unirradiated and proton beam irradiated NiTi alloy were investigated at different tests temperatures. The wire-shaped NiTi specimens were irradiated by 2?MeV proton beam for 30?min at room temperature to a flux of 1019 protons/m2 s. Engineering stress–strain (S-S) curves of both unirradiated and irradiated specimens were obtained using a materials testing machine at 25, 50, 75 and 100°C. The results indicate a single-stage phase transformation from austenite to martensite (B2–B19′) in unirraidated specimens at all the test temperatures. In contrast, in the case of the irradiated specimens, a two-stage austenite–rhombohedral–martensite (B2–R–B19′) phase transformation is observed at 25 and 50°C. The B2–R–B19′ phase transformation, however, is found to change into B2–B19′ transformation at 75 and 100°C. The stress required to initiate the B19′ phase transformation (σMS) and the plateau range are found to be lower in irradiated specimens compared with those of the unirradiated specimens. The results obtained are discussed on the basis of the formation of Ni4Ti3 precipitates in irradiated specimens and their consequences on the phase transformations.  相似文献   
944.
Solution-treated Al–4 wt% Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviours investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of continually refreshed dislocation density to provide heterogeneous nucleation sites. Crystallographic texture appears to be responsible for latent hardening in specimens tested at room temperature. Increasing temperatures lead to a gradual hardening throughout life due to precipitation. Specimens machined at 45° from the rolling direction, which exhibit rapid precipitation hardening, show greater texture hardening due to increased axial stress required to cut precipitates in specimens. In the temperature range 100–200°C, precipitation of Θ″ is suppressed by cyclic strain, and precipitation of Θ′ promoted. The rapid growth of precipitates generated by cyclic strain operates with diminishing effect at higher temperatures due to faster recovery of non-equilibrium vacancy concentrations. Θ′ precipitates generated under cyclic strain are smaller and more finely dispersed than those produced via quench-ageing due to heterogeneous nucleation on dislocations and possess a low aspect ratio and rounded edges of the broad faces caused by the introduction of ledges into the growing precipitates by dislocation cutting. Frequency effects indicate that dislocation action is responsible for the observed reduction in aspect ratio. Accelerated formation of grain-boundary precipitates appears partially responsible for rapid inter-granular fatigue failure at elevated temperatures, resulting in coexistent fatigue striations and ductile dimples on the fracture surface.  相似文献   
945.
Disks of pure Cu and several Cu–Al alloys were processed by high-pressure torsion (HPT) at room temperature through different numbers of turns to systematically investigate the influence of the stacking fault energy (SFE) on the evolution of microstructural homogeneity. The results show there is initially an inhomogeneous microhardness distribution but this inhomogneity decreases with increasing numbers of turns and the saturation microhardness increases with increasing Al concentration. Uniform microstructures are more readily achieved in materials with high or low SFE than in materials with medium SFE, because there are different mechanisms governing the microstructural evolution. Specifically, recovery processes are dominant in high or medium SFE materials, whereas twin fragmentation is dominant in materials having low SFE. The limiting minimum grain size (d min) of metals processed by HPT decreases with decreasing SFE and there is additional evidence suggesting that the dependence of d min on the SFE decreases when the severity of the external loading conditions is increased.  相似文献   
946.
947.
The frequency distribution of habit plane variant (HPV) clusters and the deviation from twin orientation relationships (ORs) at the junction plane (JP) are investigated by transmission electron microscopy together with theoretical evaluation of the kinematic compatibility (KC) at the JP in a β-titanium shape memory alloy. Even though there are more than 10 types of possible HPV clusters, only three types are formed. V-shaped couplings of HPVs by {111} type I twins (VI: 49%) and by ?211? type II twins (VII: 42%) are the predominant types. A triangular morphology due to coupling of {111} type I twins is observed with a frequency of only 9%. These preferred morphologies are well explained by the degree of incompatibility (the rotation necessary for compatible connection of HPVs). The exact twin OR and KC are maintained at the JP in a VI cluster instead of KC at the habit plane (HP), whereas the JP in a VII cluster is incompatible and the ?211? type II twin OR shows slight deviation at the JP by about 0.4°. The competition between KC at the JP and KC at the HP (invariant plane) is responsible for the frequency distribution of HPV clusters and the character of the interfaces in the self-accommodation microstructure.  相似文献   
948.
To gain insight into accommodation mechanisms for local stress concentrations produced by grain boundary sliding (GBS), we systematically examined texture evolution within a superplastic magnesium alloy undergoing deformation at a relatively low deformation temperature (at which basal slip is known to be the preferred slip system in magnesium). Although we did observe an overall weakening of the initial basal texture during superplastic deformation, we also observed within the interior of the specimen a convergent evolution that depends on loading direction. We attribute this texture evolution within the bulk to the competing effects of (a) orientation divergence due to grain rotation accompanied by GBS and (b) convergent evolution due to slip, which acts primarily as an accommodation mechanism for GBS. In contrast, at the near-surface, we found the initial orientation to be preserved, indicating that slip accommodation is less important near the surface than within the bulk.  相似文献   
949.
Abstract

Binary Al–Ni, Al–Mg and ternary Al–Mg–Ni alloys containing various dispersions and volume fraction of second-phase particles of crystallisation origin were compressed in a temperature range of 200–500 °C and at strain rates of 0.1, 1, 10, 30 s?1 using the Gleeble 3800 thermomechanical simulator. Verification of axisymmetric compression tests was made by finite-element modelling. Constitutive models of hot deformation were constructed and effective activation energy of hot deformation was determined. It was found that the flow stress is lowered by decreasing the Al3Ni particle size in case of a low 0.03 volume fraction of particles in binary Al–Ni alloys. Intensive softening at large strains was achieved in the alloy with a 0.1 volume fraction of fine Al3Ni particles. Microstructure investigations confirmed that softening is a result of the dynamic restoration processes which were accelerated by fine particles. In contrast, the size of the particles had no influence on the flow stress of ternary Al–Mg–Ni alloy due to significant work hardening of the aluminium solid solution. Atoms of Mg in the aluminium solid solution significantly affect the deformation process and lead to the growth of the effective activation energy from 130–150 kJ/mol in the binary Al–Ni alloys to 170–190 kJ/mol in the ternary Al–Mg–Ni alloy.  相似文献   
950.
Abstract

Bonding energies and volume misfits for alloying elements and vacancies in multicomponent Al–Mg–Si alloys have been calculated using density functional theory (DFT). A detailed atomic scale analysis has been done for characteristic precipitate structures, using high-angle annular dark-field scanning transmission electron microscopy. Two new stacking configurations of the important strengthening phase β′′ were discovered in the Ge-added alloy. All three stacking variations were found to be energetically favourable to form from DFT calculations. The second stacking configuration, β2′′, contains vacated columns in its unit cell, consequently requiring less solute to create the same volume fraction of precipitate needles. DFT suggests a lower formation enthalpy per atom for β2′′ when Si is exchanged with Ge. In the alloy containing Ag additions, a new Q’/C-like local configuration containing Ag instead of Cu was discovered, also this phase was deemed energetically favourable from DFT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号