首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6438篇
  免费   220篇
  国内免费   484篇
化学   1432篇
晶体学   47篇
力学   24篇
综合类   2篇
数学   508篇
物理学   5129篇
  2024年   10篇
  2023年   64篇
  2022年   72篇
  2021年   82篇
  2020年   156篇
  2019年   175篇
  2018年   186篇
  2017年   151篇
  2016年   272篇
  2015年   251篇
  2014年   362篇
  2013年   378篇
  2012年   338篇
  2011年   558篇
  2010年   376篇
  2009年   474篇
  2008年   478篇
  2007年   384篇
  2006年   416篇
  2005年   283篇
  2004年   280篇
  2003年   220篇
  2002年   177篇
  2001年   162篇
  2000年   161篇
  1999年   111篇
  1998年   154篇
  1997年   53篇
  1996年   52篇
  1995年   48篇
  1994年   37篇
  1993年   23篇
  1992年   33篇
  1991年   33篇
  1990年   20篇
  1989年   16篇
  1988年   23篇
  1987年   9篇
  1986年   19篇
  1985年   11篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1973年   4篇
  1966年   1篇
排序方式: 共有7142条查询结果,搜索用时 15 毫秒
191.
The lowest-energy state of a macroscopic system in which symmetry is spontaneously broken, is a very stable wavepacket centered around a spontaneously chosen, classical direction in symmetry space. However, for a Heisenberg ferromagnet the quantum groundstate is exactly the classical groundstate, there are no quantum fluctuations. This coincides with seven exceptional properties of the ferromagnet, including spontaneous time-reversal symmetry breaking, a reduced number of Nambu–Goldstone modes and the absence of a thin spectrum (Anderson tower of states). Recent discoveries of other non-relativistic systems with fewer Nambu–Goldstone modes suggest these specialties apply there as well. I establish precise criteria for the absence of quantum fluctuations and all the other features. In particular, it is not sufficient that the order parameter operator commutes with the Hamiltonian. It leads to a measurably larger coherence time of superpositions in small but macroscopic systems.  相似文献   
192.
We study the spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations by separately calculating the contribution to the excitation rate of vacuum fluctuations and a cross term which involves both vacuum fluctuations and radiation reaction, and demonstrate that although the spontaneous excitation for the atom in its ground state would occur in vacuum, such atoms in circular motion do not perceive a pure thermal radiation as their counterparts in linear acceleration do since the transition rates of the atom do not contain the Planckian factor characterizing a thermal bath. We also find that the contribution of the cross term that plays the same role as that of radiation reaction in the scalar and electromagnetic fields cases differs for atoms in circular motion from those in linear acceleration. This suggests that the conclusion drawn for atoms coupled with the scalar and electromagnetic fields that the contribution of radiation reaction to the mean rate of change of atomic energy does not vary as the trajectory of the atom changes from linear acceleration to circular motion is not a general trait that applies to the Dirac field where the role of radiation reaction is played by the cross term.  相似文献   
193.
A general approach to a solution of few- and many-body scattering problems based on a continuum-discretization procedure is described in detail. The complete discretization of continuous spectrum is realized using stationary wave packets which are the normalized states constructed from exact non-normalized continuum states. Projecting the wave functions and all scattering operators like tt-matrix, resolvent, etc. on such a wave-packet basis results in a formulation of quantum scattering problem entirely in terms of discrete elements and linear equations with regular matrices. It is demonstrated that there is a close relation between the above stationary wave packets and pseudostates which are employed often to approximate the scattering states with a finite L2L2 basis. Such a fully discrete treatment of complicated few- and many-body scattering problems leads to significant simplification of their practical solution. Also we get finite-dimensional approximations for complicated operators like effective interactions between composite particles constructed via the Feshbach-type projection formalism. As illustrations to this general approach we consider several important particular problems including multichannel scattering and scattering in the three-nucleon system within the Faddeev framework.  相似文献   
194.
We present a path independent (global) algorithm for phase unwrapping based on the minimisation of a robust cost function. The algorithm incorporates an outlier rejection mechanism making it robust to large inconsistencies and discontinuities. The proposal consists on an iterative incremental scheme that unwraps a sub-estimation of the residual phase at each iteration. The sub-estimation degree is controlled by an algorithm׳s parameter. We present an efficiently computational multigrid implementation based on a nested strategy: the process is iterated by using multiple resolutions. The proposal׳s performance is demonstrated by experiments with synthetic and real data, and successfully compared with algorithms of the state of the art.  相似文献   
195.
Combining high and low probability densities in intensity hybrids  , we study some of their properties in double-slit setups. In particular, we connect to earlier results on beam attenuation techniques in neutron interferometry and study the effects of very small transmission factors, or very low counting rates, respectively, at one of the two slits. We use a “superclassical” modeling procedure which we have previously shown to produce predictions identical with those of standard quantum theory. Although in accordance with the latter, we show that there are previously unexpected new effects in intensity hybrids for transmission factors below a?10−4a?104, which can eventually be observed with the aid of weak measurement techniques. We denote these as quantum sweeper effects, which are characterized by the bunching together of low counting rate particles within very narrow spatial domains. We give an explanation of this phenomenology by the circumstance that in reaching down to ever weaker channel intensities, the nonlinear nature of the probability density currents becomes ever more important, a fact which is generally not considered–although implicitly present–in standard quantum mechanics.  相似文献   
196.
197.
198.
A novel sandwich‐type electrochemiluminescence (ECL) immunosensor was developed to enable the sensitive detection of HIV‐1 antibodies. This system incorporated mesoporous silica (mSiO2) complexed with quantum dots (QDs) and nano‐gold particles, which were assembled to enhance signal detection. Magnetic beads were used by immobilizing the secondary anti‐IgG antibody. This was first employed to capture HIV‐1 antibody (Ab) to form a Fe3O4/anti‐IgG/Ab complex. A high loading and signal‐enhanced nanocomposite (hereafter referred to as Au‐mSiO2‐CdTe) was used as a HIV‐1 antigen label. The Au‐mSiO2‐CdTe nanocomposite was conjugated with the Fe3O4/anti‐IgG/Ab complex to form an immunocomplex (hereafter referred to as Fe3O4/anti‐IgG/Ab/HIV‐1/CdTe‐mSiO2‐Au). This complex could be further separated by an external magnetic field to produce ECL signals. Due to the large specific surface area and pore volume of mSiO2, the loading of the CdTe QDs was markedly increased. Thus, the loaded QDs released a powerful chemiluminescent signal with a concordantly increased sensitivity of the immunosensor. The immunosensor was highly sensitive, and displayed a linear range of responses for HIV‐1 antibody across a dilution range of 1 : 1500 through 1 : 50 with the detection limit of 1 : 4500. The immunoassay can be a promising candidate in early diagnosis of HIV infection.  相似文献   
199.
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL−1 by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.  相似文献   
200.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号