首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7838篇
  免费   599篇
  国内免费   763篇
化学   2799篇
晶体学   63篇
力学   21篇
综合类   9篇
数学   507篇
物理学   5801篇
  2024年   24篇
  2023年   108篇
  2022年   166篇
  2021年   188篇
  2020年   320篇
  2019年   278篇
  2018年   283篇
  2017年   270篇
  2016年   406篇
  2015年   391篇
  2014年   475篇
  2013年   543篇
  2012年   457篇
  2011年   669篇
  2010年   480篇
  2009年   543篇
  2008年   561篇
  2007年   437篇
  2006年   473篇
  2005年   329篇
  2004年   302篇
  2003年   232篇
  2002年   191篇
  2001年   164篇
  2000年   194篇
  1999年   122篇
  1998年   165篇
  1997年   57篇
  1996年   54篇
  1995年   50篇
  1994年   41篇
  1993年   23篇
  1992年   32篇
  1991年   32篇
  1990年   23篇
  1989年   16篇
  1988年   24篇
  1987年   9篇
  1986年   19篇
  1985年   14篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1973年   4篇
  1966年   1篇
排序方式: 共有9200条查询结果,搜索用时 0 毫秒
11.
A. Bande 《Molecular physics》2019,117(15-16):2014-2028
ABSTRACT

Recently, highly accurate multi-configuration time-dependent Hartree electron dynamics calculations demonstrated the efficient long-range energy transfer inter-Coulombic decay (ICD) process to happen in charged semiconductor quantum dot (QD) pairs. ICD is initiated by intraband photoexcitation of one of the QDs and leads to electron emission from the other within a duration of about 150 ps. On the same time scale electronically excited states are reported to relax due to the coupling of electrons to acoustic phonons. Likewise, phonons promote ionisation. Here, the QDs' acoustic breathing mode is implemented in a frozen-phonon approach. A detailed comparison of the phonon effects on electron relaxation and emission as well as on the full ICD process is presented, which supports the previous empirical finding of ICD being the dominant decay channel in paired QDs. In addition the relative importance of phonon–phonon, phonon–electron and electron–electron interaction is analysed.  相似文献   
12.
We report the results of our investigation of magnetization and heat capacity on a series of compounds Ce1?xYxNiGe2 (x=0.1,0.2 and 0.4) under the influence of external magnetic field. Our studies of the thermodynamic quantity ?dM/dT on these compounds indicate that magnetic frustration persists in Ce0.9Y0.1NiGe2, as also reported for the parent compound CeNiGe2. The weak signature of this frustration is also noted in Ce0.8Y0.2NiGe2, whereas, it is suppressed in Ce0.6Y0.4NiGe2. Heat capacity studies on Ce0.9Y0.1NiGe2 and Ce0.8Y0.2NiGe2 indicate the presence of a new magnetic anomaly at high field which indicates that quantum criticality is absent in these compounds. However, for Ce0.6Y0.4NiGe2 such an anomaly is not noted. For this later compound, the magnetic field (H) and temperature (T) dependence of heat capacity and magnetization obey H/T scaling above critical fields. However, the obtained scaling critical parameter (δ) is 1.6, which is away from mean field value of 3. This deviation suggests the presence of unusual fluctuations and anomalous quantum criticality in these compounds. This unusual fluctuation may arise from disorderness induced by Y-substitution.  相似文献   
13.
Electron transport properties of an ideal one-dimensional (1D) quantum wire are studied including spatially periodic Rashba spin–orbit coupling (SOC) and Dresselhaus SOC. By comparing with the previous work [S.J. Gong, Z.Q. Yang, J. Phys. Condens. Matter 19 (2007) 446209], two transmission gaps appear in the transmission probability of electrons and their widths are also broadened dramatically. Moreover, it is found that their widths are sensitive not only to the strength of SOCs but also to the length ratio of SOCs segment and non-SOCs segment. In addition, a ‘circle-type’ transmission behavior has been found by tuning the strength of SOCs continuously. Our results may extend the previous work and provide an more effective method to manipulate the current in nanoelectric devices.  相似文献   
14.
We discuss systematically several possible inequivalent ways to describe the dynamics and the transition probabilities of a quantum system when its hamiltonian is not self-adjoint. In order to simplify the treatment, we mainly restrict our analysis to finite dimensional Hilbert spaces. In particular, we propose some experiments which could discriminate between the various possibilities considered in the paper. An example taken from the literature is discussed in detail.  相似文献   
15.
A general approach to a solution of few- and many-body scattering problems based on a continuum-discretization procedure is described in detail. The complete discretization of continuous spectrum is realized using stationary wave packets which are the normalized states constructed from exact non-normalized continuum states. Projecting the wave functions and all scattering operators like tt-matrix, resolvent, etc. on such a wave-packet basis results in a formulation of quantum scattering problem entirely in terms of discrete elements and linear equations with regular matrices. It is demonstrated that there is a close relation between the above stationary wave packets and pseudostates which are employed often to approximate the scattering states with a finite L2L2 basis. Such a fully discrete treatment of complicated few- and many-body scattering problems leads to significant simplification of their practical solution. Also we get finite-dimensional approximations for complicated operators like effective interactions between composite particles constructed via the Feshbach-type projection formalism. As illustrations to this general approach we consider several important particular problems including multichannel scattering and scattering in the three-nucleon system within the Faddeev framework.  相似文献   
16.
A novel sandwich‐type electrochemiluminescence (ECL) immunosensor was developed to enable the sensitive detection of HIV‐1 antibodies. This system incorporated mesoporous silica (mSiO2) complexed with quantum dots (QDs) and nano‐gold particles, which were assembled to enhance signal detection. Magnetic beads were used by immobilizing the secondary anti‐IgG antibody. This was first employed to capture HIV‐1 antibody (Ab) to form a Fe3O4/anti‐IgG/Ab complex. A high loading and signal‐enhanced nanocomposite (hereafter referred to as Au‐mSiO2‐CdTe) was used as a HIV‐1 antigen label. The Au‐mSiO2‐CdTe nanocomposite was conjugated with the Fe3O4/anti‐IgG/Ab complex to form an immunocomplex (hereafter referred to as Fe3O4/anti‐IgG/Ab/HIV‐1/CdTe‐mSiO2‐Au). This complex could be further separated by an external magnetic field to produce ECL signals. Due to the large specific surface area and pore volume of mSiO2, the loading of the CdTe QDs was markedly increased. Thus, the loaded QDs released a powerful chemiluminescent signal with a concordantly increased sensitivity of the immunosensor. The immunosensor was highly sensitive, and displayed a linear range of responses for HIV‐1 antibody across a dilution range of 1 : 1500 through 1 : 50 with the detection limit of 1 : 4500. The immunoassay can be a promising candidate in early diagnosis of HIV infection.  相似文献   
17.
We announce a result on quantum McK ay correspondence for disc invariants of outer legs in toric Calabi–Yau 3-orbifolds, and illustrate our method in a special example [C3/Z5(1, 1, 3)].  相似文献   
18.
We report in this study the effects of red-emitting CdTe QDs capped with cysteamine(Cys-CdTe) on the in vitro anticancer activity of the well-known flavenoid quercetin(Qu). Various techniques, including the methylthiazolyldiphenyl-tetrazolium bromide assay, the real-time cell electronic sensing system, the optical and fluorescence imaging, and electrochemical methods have been utilized to study the potential interactions of Cys-CdTe QDs with Qu. The observations demonstrate that the safe-dosage Cys-CdTe QDs can greatly improve the drug uptake and enhance the inhibition efficiency of Qu towards the proliferation of cancer cells such as HepG2 cells. This study implies that Cys-CdTe QDs may be used for cancer therapy and that they exert a synergic anticancer effect when bound to drug molecules.  相似文献   
19.
20.
We explore the low-frequency noise of interacting electrons in a one-dimensional structure (quantum wire or interaction-coupled edge states) with counterpropagating modes, assuming a single channel in each direction. The system is driven out of equilibrium by a quantum point contact (QPC) with an applied voltage, which induces a double-step energy distribution of incoming electrons on one side of the device. A second QPC serves to explore the statistics of outgoing electrons. We show that measurement of a low-frequency noise in such a setup allows one to extract the Luttinger liquid constant K which is the key parameter characterizing an interacting 1D system. We evaluate the dependence of the zero-frequency noise on K and on parameters of both QPCs (transparencies and voltages).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号