首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23006篇
  免费   2882篇
  国内免费   1236篇
化学   20910篇
晶体学   105篇
力学   45篇
综合类   16篇
数学   521篇
物理学   5527篇
  2024年   26篇
  2023年   302篇
  2022年   613篇
  2021年   729篇
  2020年   1375篇
  2019年   1103篇
  2018年   930篇
  2017年   763篇
  2016年   1473篇
  2015年   1301篇
  2014年   1402篇
  2013年   1592篇
  2012年   1262篇
  2011年   1558篇
  2010年   1234篇
  2009年   1366篇
  2008年   1314篇
  2007年   1140篇
  2006年   1123篇
  2005年   922篇
  2004年   930篇
  2003年   743篇
  2002年   1368篇
  2001年   387篇
  2000年   312篇
  1999年   300篇
  1998年   368篇
  1997年   199篇
  1996年   152篇
  1995年   155篇
  1994年   88篇
  1993年   56篇
  1992年   58篇
  1991年   64篇
  1990年   51篇
  1989年   35篇
  1988年   49篇
  1987年   26篇
  1986年   83篇
  1985年   25篇
  1984年   12篇
  1983年   12篇
  1981年   8篇
  1980年   14篇
  1979年   11篇
  1978年   10篇
  1977年   9篇
  1973年   9篇
  1972年   12篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
952.
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL−1 by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.  相似文献   
953.
Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λem max = 650 nm, λex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O2 to produce H2O2, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10−6–140 × 10−6 M and a detection limit of 0.7 × 10−6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.  相似文献   
954.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   
955.
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8 × 10−12 M to 2.40 × 10−4 M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems.  相似文献   
956.
In the last few years, polymer bioconjugates have been shown to be useful in many emerging areas of materials science. Consequently, the synthesis of polymer bioconjugates has suddenly become a central topic in polymer chemistry. The versatility and robust nature of modern synthetic methods such as controlled radical polymerisation (CLRP),1 ring-opening polymerisation (ROP), and ‘click’ chemistry make them excellent tools for the preparation of tailor-made polymer bioconjugates. CLRP in combination with other techniques has been shown to be a mature technology for building tailor-made block copolymers and protein–polymer conjugates with a wide range of applications, especially in biomedical domains. This review describes the recent advances and progress in the rapidly expanding field of bioconjugation, outlining the work performed up to 2012.  相似文献   
957.
This study describes an environmentally friendly and green synthetic approach for the preparation of poly(aminoethylmethacrylate)-based hydrogels crosslinked through Diels–Alder (DA) reaction in water. This “click” reaction offers the possibility of preparing chemically crosslinked hydrogels in the absence of any catalyst, initiator or coupling agent, thus preserving the biocompatibility of the material. The suitable furan diene was obtained by modifying a methacrylate polymer by its reaction with furfural, a first generation compound derived from renewable resources. Methacrylate-based complementary polymeric dienophiles were also prepared by introducing maleimide groups into the structure. The products obtained at different steps were characterized by FTIR, NMR and TGA techniques. The study of the rheological properties of the hydrogels proved the success of this green “click” synthetic strategy confirming the formation of chemically crosslinked networks by the use of the Diels–Alder reaction. Furthermore, SEM studies revealed promising morphological properties of the ensuing hydrogels in terms of biomedical applications.  相似文献   
958.
A facile and simple protocol for the 1,3‐dipolar cycloaddition of organic azides with terminal alkynes catalyzed by doped nano‐sized Cu2O on melamine? formaldehyde resin (nano‐Cu2O? MFR) as a new and convenient heterogeneous catalyst is described. In this method, ‘click’ cycloaddition of various structurally diverse β‐azido alcohols and alkynes in the presence of nano‐Cu2O? MFR in H2O/THF 1 : 2 furnished the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazole adducts 1a – 1o in good to excellent yields at room temperature (Scheme and Table 3). The nano‐Cu2O? MFR was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), inductively coupled plasma (ICP) analysis, and FT‐IR. The nano‐Cu2O? MFR could be easily recovered and recycled from the reaction mixture and reused for many consecutive trials without significant decrease in activity (Table 4). The in vitro antibacterial activities of all synthesized compounds were tested on several Gram‐positive and/or Gram‐negative bacteria (Table 5). The results demonstrate the promising antibacterial activity for some of the synthesized compounds.  相似文献   
959.
2,3-Dichloroquinoline was prepared in three steps in good overall yield from commercial 3-bromoquinoline via N-oxide formation and rearrangement to 3-bromocarbostyril, followed by a one-pot conversion to 3-bromo-2-chloroquinoline and halogen exchange to the title compound.  相似文献   
960.
The radical addition reactions of α-substituted β,β-difluorovinyl sulfones 1 with α-oxy and acyl radical species, such as 1,3-dioxolane, tetrahydrofuran, 1,4-dioxane, butanal and hexanal, afforded radical addition products 2--16 in good yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号