首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   20篇
  国内免费   1篇
化学   5篇
晶体学   14篇
物理学   281篇
  2022年   1篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   60篇
  2008年   60篇
  2007年   51篇
  2006年   41篇
  2005年   11篇
  2004年   4篇
  2003年   17篇
  2002年   13篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有300条查询结果,搜索用时 31 毫秒
241.
A comparative analysis of the properties of the non-passivated and S-passivated GaSb(1 0 0) surfaces has been performed through PL, AFM and RHEED characterization. The samples treated with a 1 M Na2S aqueous solution demonstrate an increase in the 5 K PL intensity. According to AFM data, the annealing of the S-passivated GaSb(1 0 0) leads to the formation of the clean flat (1 0 0) surface. Moreover, after annealing the PL intensity of the S-passivated GaSb(1 0 0) surfaces decreases by 20%, whereas for the non-passivated samples it drops by more than a factor of 4. The method of wet sulfur passivation has shown great effectiveness in pre-epitaxial processing for LPE and MBE growth of the GaSb-related materials for optoelectronics.  相似文献   
242.
The surface roughness of the semiconductor substrate substantially influences properties of the whole semiconductor/oxide structure. SiO2/Si structures were prepared by using low temperature nitric acid oxidation of silicon (NAOS) method and then the whole structure was passivated by the cyanidization procedure. The influence of the surface morphology of the silicon substrate onto the electrical properties of ultrathin NAOS SiO2 layer was investigated. Surface height function properties were studied by the AFM method and electrical properties were studied by the STM method. The complexity of analyzed surface structure was sensitive to the oxidation and passivation steps. For describing changes in the oxide layer structure, several fractal measures in an analysis of the STM images were used. This fractal geometry approach enables quantifying the fine spatial changes in the tunneling current spectra.  相似文献   
243.
Chemical mechanical polishing (CMP) technology, being the mainstream technique of acquiring global planarization and nanometer level surface, has already become an attractive research item. In the case of CMP process, the indentation depth lies in the range of nanometer or sub-nanometer, huge hydrostatic pressure induced in the local deformation area which makes the material removal and surface generation process different from traditional manufacturing process. In order to investigate the physical essence of CMP technique, the authors carry out molecular dynamics (MD) analysis of chemical mechanical polishing of a silicon wafer. The simulation result shows that huge hydrostatic pressure is induced in the local area and leads to the silicon atom transform from the classical diamond structure (α silicon) to metal structure (β silicon). This important factor results in the ductile fracture of silicon and then in the acquisition of a super-smooth surface.  相似文献   
244.
We report new evidences for the thermodynamic instability of whisker crystals in the Bi–Sr–Ca–Cu–O (BSCCO) system. Annealing treatments at 90°C have been performed on two sets of samples, which were monitored by means of X-Rays Diffraction (XRD) and Atomic Force Microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi2Sr2CuCa2O8+x (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers.  相似文献   
245.
Three-dimensional molecular dynamics simulation of groove fabrication using atomic force microscopy (AFM)-based nanometric cutting technique is set up, fabrication processes of grooves with two types (line, and folder line) and five folder angles (0°, 30°, 45°, 60°, 90°) are simulated to investigate the effect of groove geometry on the fabrication process. The results show that the Normal force, Lateral force, and Resultant forces are almost symmetric with respect to the critical folder angle of 45°. The best surface quality of fabricated groove can be obtained at the folder angle of 45°. It reveals that the groove geometry has a significant effect on the groove fabrication process due to the material anisotropy on the atomic scale.  相似文献   
246.
Top-contact organic thin-film transistors (OTFTs) of pentacene have been fabricated on bare SiO2 and SiO2 modified with hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (OTS). The pentacene films were deposited from a supersonic molecular beam source with kinetic energy of incident molecules ranging from 1.5 to 6.7 eV. The field-effect mobility of OTFTs was found to increase systematically with increasing kinetic energy of the molecular beam. The improvements are more important on HMDS- and OTS-treated surfaces than on bare SiO2. Tapping mode atomic force microscopy images reveal that pentacene thin films deposited at high kinetic energy form with significantly larger grains—independent of surface treatment—than films deposited using low-energy beams.  相似文献   
247.
In order to investigate the surface heterogeneity of silicon oxynitride films, we observed the nanoscale variation of the surface potential by Kelvin probe force microscopy (KFM), the molecular bonding characteristics by Fourier transform infrared spectrometry (FTIR), and the wetting behavior by contact angle measurement. Nitrogen incorporation into silicon oxynitride films influenced the decrease in the surface potential and the polar component of the surface free energy. We present the first correlation between the nanoscale measurement of the surface potential and the macroscopic measurement of the surface free energy in silicon oxynitride films grown by a standard plasma‐enhanced chemical vapor deposition (PECVD) technique. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
248.
The presented compound, Sr2TaMnO6, has a weak, disordered magnetic structure. The metal oxide was prepared under high isostatic oxygen pressure. The doubling of the perovskite structure was proven with electron diffraction and powder neutron diffraction. Combining neutron- and X-ray diffraction data, the room-temperature structure was modelled with the Rietveld method. Both octahedral positions are partially occupied by Mn and Ta, but with different Mn/Ta ratios. AC- and DC-magnetic measurements indicate a magnetic transition at about 17 K and the AC-magnetic susceptibility, both real and imaginary part, is frequency dependent, suggesting that the material has a spin-glass feature. The magnetic spins freeze during a wide temperature range and a possible explanation is a competative situation between the double exchange (ferromagnetism) and the super-exchange (anti-ferromagnetism).  相似文献   
249.
ZnO films were deposited on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Annealing treatments for as-deposited samples were performed in different atmosphere under various pressures in the same chamber just after growth. The effect of annealing atmosphere on the electrical, structural, and optical properties of the deposited films has been investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM), Hall effect, and optical absorption measurements. The results indicated that the electrical and structural properties of the films were highly influenced by annealing atmosphere, which was more pronounced for the films annealed in oxygen ambient. The most significant improvements for structural and electrical properties were obtained for the film annealed in oxygen under the pressure of 60 Pa. Under the optimum annealing condition, the lowest resistivity of 0.28 Ω cm and the highest mobility of 19.6 cm2 v−1 s−1 were obtained. Meanwhile, the absorbance spectra turned steeper and the optical band gap red shifted back to the single-crystal value.  相似文献   
250.
We have studied the surface atomic structure of GaAs(6 3 1), and the GaAs growth by molecular beam epitaxy (MBE) on this plane. After the oxide desorption process at 585 °C reflection high-energy electron diffraction (RHEED) showed along the [−1 2 0] direction a 2× surface reconstruction for GaAs(6 3 1)A, and a 1× pattern was observed for GaAs(6 3 1)B. By annealing the substrates for 60 min, we observed that on the A surface appeared small hilly-like features, while on GaAs(6 3 1)B surface pits were formed. For GaAs(6 3 1)A, 500 nm-thick GaAs layers were grown at 585 °C. The atomic force microscopy (AFM) images at the end of growth showed the self-formation of nanoscale structures with a pyramidal shape enlarged along the [5−9−3] direction. Transversal views of the bulk-truncated GaAs(6 3 1) surface model showed arrays of atomic grooves along this direction, which could influence the formation of the pyramidal structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号