首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69985篇
  免费   5081篇
  国内免费   6325篇
化学   27851篇
晶体学   286篇
力学   6258篇
综合类   1229篇
数学   25059篇
物理学   20708篇
  2023年   546篇
  2022年   1152篇
  2021年   1188篇
  2020年   1289篇
  2019年   1546篇
  2018年   1297篇
  2017年   1560篇
  2016年   1787篇
  2015年   1625篇
  2014年   2288篇
  2013年   4464篇
  2012年   2742篇
  2011年   3093篇
  2010年   2665篇
  2009年   3807篇
  2008年   4231篇
  2007年   4459篇
  2006年   4151篇
  2005年   3541篇
  2004年   3253篇
  2003年   3282篇
  2002年   3024篇
  2001年   2541篇
  2000年   2486篇
  1999年   2228篇
  1998年   2088篇
  1997年   1721篇
  1996年   1525篇
  1995年   1391篇
  1994年   1287篇
  1993年   1107篇
  1992年   1074篇
  1991年   840篇
  1990年   700篇
  1989年   596篇
  1988年   549篇
  1987年   432篇
  1986年   365篇
  1985年   431篇
  1984年   426篇
  1983年   208篇
  1982年   338篇
  1981年   399篇
  1980年   301篇
  1979年   293篇
  1978年   221篇
  1977年   205篇
  1976年   154篇
  1974年   109篇
  1973年   104篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
991.
We consider coefficient bodies Mn for univalent functions. Based on the Löwner-Kufarev parametric representation we get a partially integrable Hamiltonian system in which the first integrals are Kirillov's operators for a representation of the Virasoro algebra. Then Mn are defined as sub-Riemannian manifolds. Given a Lie-Poisson bracket they form a grading of subspaces with the first subspace as a bracket-generating distribution of complex dimension two. With this sub-Riemannian structure we construct a new Hamiltonian system to calculate regular geodesics which turn to be horizontal. Lagrangian formulation is also given in the particular case M3.  相似文献   
992.
This paper presents a variational inequality (VI) approach to the problem of minimizing a sum of p-norms. First the original problem is reformulated as an equivalent linear VI. Then an improved extra-gradient method is presented to solve the linear VI. Applications to the problem of p-norm Steiner Minimum Trees (SMT) shows that the proposed method is effective. Comparison with the general extra-gradient method is also provided to show the improvements of the new method.  相似文献   
993.
The overall effects of oxygen on thiol–acrylate photopolymerizations were characterized. Specially, the choice of thiol monomer chemistry, functionality, and concentration on the extent of oxygen inhibition were considered. As thiol concentration was increased, the degree of oxygen inhibition was greatly reduced because of chain transfer from the peroxy radical to the thiol. When comparing the copolymerization of 1,6‐hexanediol diacrylate with the alkane‐based thiol (1,6‐hexane dithiol) to the copolymerization with the propionate thiol (glycol dimercaptopropionate), it was found that the propionate system was much more reactive and polymerized to a greater extent in the presence of oxygen. In addition, the functionality was considered where the glycol dimercaptopropionate was compared to a tetrafunctional propionate of similar chemistry (pentaerythritol tetrakis(mercaptopropionate)). Given the same thiol concentration, the higher functionality thiol imparted a faster polymerization rate, due to the increased polymer system viscosity, which limited oxygen diffusion and decreased the extent of overall oxygen inhibition. Thus, preliminary insight is provided into how thiol monomer choice affects the extent of oxygen inhibition in thiol–acrylate photopolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2007–2014, 2006  相似文献   
994.
The photopolymerization of bicontinuous microemulsions was simultaneously monitored with differential scanning calorimetry and fluorescence. The kinetics and mechanism of the reaction were studied throughout the entire photopolymerization reaction. The role played by the surfactant in the kinetics and morphology was studied. The nature of the surfactant changed the autoacceleration process and final conversion. The behavior was explained as a result of the differences in the interfacial properties. Anionic cetyltrimethylammonium bromide (CTAB) gave rise to a more flexible interfacial film than anionic sodium dodecyl sulfate (SDS), resulting in competition between the intramolecular and intermolecular reactions in the former systems. As cyclization did not contribute to the increase in the degree of crosslinking, SDS photopolymerization gave solids with a more rigid microstructure. Fluorescence methodology was applied to monitor bicontinuous microemulsion polymerization and to reveal the microstructure and morphology development during photopolymerization. The microemulsion composition was designed to prepare nanoporous, crosslinked materials. Even though the nanostructure of the precursor microemulsions was not retained because of phase separation during polymerization, mesoporous solids were obtained. Their morphologies depended on the nature of the surfactant, and membranes with open cells were successfully prepared with CTAB, whereas more complex morphologies resulted with SDS. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5291–5303, 2006  相似文献   
995.
Block copolymer micelles and shell cross-linked nanoparticles (SCKs) presenting Click-reactive functional groups on their surfaces were prepared using two separate synthetic strategies, each employing functionalized initiators for the controlled radical polymerization of acrylate and styrenic monomers to afford amphiphilic block copolymers bearing an alkynyl or azido group at the α-terminus. The first route for the synthesis of the azide-functionalized nanostructures was achieved via sequential nitroxide-mediated radical polymerization (NMP) of tert-butyl acrylate and styrene, originating from a benzylic chloride-functionalized initiator, followed by deprotection of the acrylic acids, supramolecular assembly of the block copolymer in water and conversion of the benzylic chloride to a benzylic azide. In contrast, the second strategy utilized an alkynyl-functionalized reversible addition fragmentation transfer (RAFT) agent directly for the RAFT-based sequential polymerization of tetrahydropyran acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give the α-alkynyl-functionalized block copolymers. These Click-functionalized polymers, with the functionality located at the hydrophilic polymer termini, were then self-assembled using a mixed-micelle methodology to afford surface-functionalized “Clickable” micelles in aqueous solutions. The optimum degree of incorporation of the Click-functionalized polymers was investigated and determined to be ca. 25%, which allowed for the synthesis of well-defined surface-functionalized nanoparticles after cross-linking selectively throughout the shell layer using established amidation chemistry. Functionalization of the chain ends was shown to be an efficient process under standard Click conditions and the resulting functional groups revealed a more “solution-like” environment when compared to the functional group randomly inserted into the hydrophilic shell layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5203–5217, 2006  相似文献   
996.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   
997.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   
998.
999.
Diblock copolymers of 5‐(methylphthalimide)bicyclo[2.2.1]hept‐2‐ene (NBMPI) and 1,5‐cyclooctadiene were synthesized by living ring‐opening metathesis polymerization with a well‐defined catalyst {RuCl2(CHPh)[P(C6H11)3]2}. Unhydrogenated diblock copolymers showed two glass transitions due to poly(NBMPI) and polybutadiene segments, such as two glass‐transition temperatures at ?86.5 and 115.3 °C for poly 1a and ?87.2 and 115.3 °C for poly 1b . However, only one melting temperature could be observed for hydrogenated copolymers, such as 119.8 °C for poly 2a and 121.7 °C for poly 2b . The unhydrogenated diblock copolymer with the longer poly(NBMPI) chain (poly 1a ; temperature at 10% mass loss = 400 °C) exhibited better thermal stability than the one with the shorter poly(NBMPI) chain (poly 1b ; temperature at 10% mass loss = 385 °C). Two kinds of hydrogenated diblock copolymers, poly 2a and poly 2b , exhibited relatively poor solubility but better thermal stability than unhydrogenated diblock copolymers because of the polyethylene segments. Poly[(hydrochloride quaternized 2‐norbornene‐5‐methyleneamine)‐b‐butadiene]‐1 (poly 3a ) was obtained after the hydrolysis and quaternization of poly 1a . Dynamic light scattering measurements indicated that the hydrodynamic diameters of the cationic copolymer (poly 3a ) in water (hydrodynamic diameter = 1580 nm without salt), methanol/water (4/96 v/v; hydrodynamic diameter = 1500 nm without salt), and tetrahydrofuran/water (4/96 v/v; hydrodynamic diameter = 1200 nm without salt) decreased with increasing salt (NaCl) concentration. The effect of temperature on the hydrodynamic diameter of hydrophobically modified poly 3a was also studied. The inflection point of the hydrodynamic diameter of poly 3a was observed at various polymer concentrations around 30 °C. The critical micelle concentration of hydrophobically modified poly 3a was observed at 0.018 g dL?1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2901–2911, 2006  相似文献   
1000.
Speed of sound and densities of the ternary mixture 2-propanol + diethyl ether + n-hexane and also the binary mixtures 2-propanol + diethyl ether and 2-propanol + n-hexane have been measured at the entire composition range at 298.15 K. The excess isentropic compressibilities and the excess speed of the sound have been calculated from experimental densities and speed of sound. These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka’s equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary mixtures and also the ternary mixtures. Speed of sound of the binary mixtures and the ternary mixture have been compared with calculated values from free length theory (FLT), collision factor theory (CFT), Nomoto’s relation (NR), Van Deal’s ideal mixing relation (IMR) and Junjie’s relation (JR). The results are used to compare the relative merits of these theories and relations in terms of the root mean square deviation relative (RMSDr).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号