全文获取类型
收费全文 | 341篇 |
免费 | 1篇 |
国内免费 | 5篇 |
专业分类
化学 | 16篇 |
力学 | 42篇 |
数学 | 7篇 |
物理学 | 282篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 6篇 |
2019年 | 41篇 |
2018年 | 11篇 |
2017年 | 3篇 |
2016年 | 15篇 |
2015年 | 2篇 |
2014年 | 2篇 |
2013年 | 81篇 |
2012年 | 4篇 |
2011年 | 14篇 |
2010年 | 4篇 |
2009年 | 46篇 |
2008年 | 9篇 |
2007年 | 23篇 |
2006年 | 5篇 |
2005年 | 51篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1989年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1968年 | 2篇 |
排序方式: 共有347条查询结果,搜索用时 15 毫秒
251.
This paper is concerned with the identification of the key interactions controlling the deflagration-to-detonation transition in narrow smooth-walled channels. Two agencies contributing to the transition are discussed: hydraulic resistance and flame folding. Depending on the kinetics and parameters of the system, nucleation of detonation may occur near the channel wall and/or in the channel interior. A possibly unexpected outcome of the resistance-folding interplay is the non-monotonicity of the dependence between the predetonation run up time/distance and the channel width. 相似文献
252.
Brruntha Sundaram Alexander Yuri Klimenko Matthew John Cleary Yipeng Ge 《Combustion Theory and Modelling》2016,20(4):735-764
This work presents a direct and transparent interpretation of two concepts for modelling turbulent combustion: generalised Multiple Mapping Conditioning (MMC) and sparse-Lagrangian Large Eddy Simulation (LES). The MMC approach is presented as a hybrid between the Probability Density Function (PDF) method and approaches based on conditioning (e.g. Conditional Moment Closure, flamelet, etc.). The sparse-Lagrangian approach, which allows for a dramatic reduction of computational cost, is viewed as an alternative interpretation of the Filtered Density Function (FDF) methods. This work presents simulations of several turbulent diffusion flame cases and discusses the universality of the localness parameter between these cases and the universality of sparse-Lagrangian FDF methods with MMC. 相似文献
253.
254.
A. Fish 《Angewandte Chemie (International ed. in English)》1968,7(1):45-60
This review describes the properties of the cool-flame and two-stage ignition processes that characterize the gaseous oxidation of hydrocarbons and discusses the chemical reactions that are responsible for these phenomena. Cool flames result from a chainthermal acceleration of reaction rate. It is probable that the free-radical chain involved is propagated by the reaction of an alkyl radical with oxygen to give an alkyperoxy radical which isomerizes to a hydroperoxyalkyl radical. The decomposition of this radical produces a hydroxyl radical, which attacks the hydrocarbon rapidly and unselectively to regenerate an alkyl radical. Branching probably results from the pyrolysis of mono- and dihydroperoxides, from the oxidation of aldehydes, and from radical-molecule reactions. This reaction scheme explains the existence of a low-temperature ignition peninsula and the relation of the extent and shape of this peninsula to the molecular structure of the hydrocarbon. The chemical relevance of cool flames to abnormal combustion phenomena, such as knock, in gasoline engines is discussed. 相似文献
255.
Large eddy simulations of turbulent flames using the filtered density function model 总被引:1,自引:0,他引:1
Large eddy simulations (LES) of the Sandia/Sydney swirl burners (SM1 and SMA1) and the Sandia/Darmstadt piloted jet diffusion flame (Flame D) are performed. These flames are part of the database of turbulent reacting flows widely considered as benchmark test cases for validating turbulent-combustion models. In the simulations presented in this paper, the subgrid scale (SGS) closure model adopted for turbulence-chemistry interactions is based on the transport filtered density function (FDF) model. In the FDF model, the transport equation for the joint probability density function (PDF) of scalars is solved. The main advantage of this model is that the filtered reaction rates can be exactly computed. However, the density field, computed directly from the FDF solver and needed in the hydrodynamic equations, is noisy and causes numerical instability. Two numerical approaches that yield a smooth density field are examined. The two methods are based on transport equations for specific sensible enthalpy (hs) and RT, where R is the gas constant and T is the temperature. Consistency of the two methods is assessed in a bluff-body configuration using Reynolds averaged Navier-Stokes (RANS) methodology in conjunction with the transported PDF method. It is observed that the hs method is superior to the RT method. Both methods are used in LES of the SM1 burner. In the near-field region, the hs method produces better predictions of temperature. However, in the far-field region, both methods show deviation from data. Simulations of the SMA1 burner and Flame D are also presented using the hs method. Some deficiencies are seen in the predictions of the SMA1 burner that may be related to the simple chemical kinetics model and mixing model used in the simulations. Simulations of Flame D show good agreement with data. These results indicate that, while further improvements to the methodology are needed, the LES/FDF method has the potential to accurately predict complex turbulent flames. 相似文献
256.
257.
We investigate the effects of varying the degree of burner stabilization on Fenimore NO formation in fuel-rich low-pressure flat CH4/O2/N2 flames. Towards this end, axial profiles of flame temperature and OH, NO and CH mole fractions are measured using laser-induced fluorescence (LIF). The experiments are performed at equivalence ratios between 1.3 and 1.5. The flame temperature is seen to decrease by 200-300 K, with a concomitant decrease in OH mole fraction, upon reducing the total flow rate from 5 to 3 L/min, thus increasing stabilization. At equivalence ratios between 1.3 and 1.5, this decrease in flow rate lowers the maximum CH mole fraction by a factor of 2, and the NO mole fraction by ∼40% in all flames studied. Integrating the reaction rate for CH + N2 to estimate Fenimore NO formation, using the rate coefficient in GRI-Mech 3.0, and the measured temperatures and CH profiles show very good agreement with the measured NO mole fraction for ? = 1.3 and 1.4, supporting the current choice for this rate. This agreement also shows that the increase in residence time caused by increased stabilization is an important factor in the ultimate impact of the changes in CH mole fraction on NO formation. The results at ? = 1.5 suggest that substantial quantities of fixed nitrogen species, e.g., HCN, are only slowly oxidized in the post-flame zone under these conditions, leading to a significant discrepancy between the measured NO mole fraction and that obtained by integrating over the CH profile. Detailed calculations using GRI-Mech 3.0 predict the experimental results at ? = 1.3 nearly quantitatively, but show increasing differences with the measurements for both CH and NO profiles with increasing equivalence ratio. 相似文献
258.
Hongzhi R. Zhang Eric G. Eddings Charles K. Westbrook 《Proceedings of the Combustion Institute》2009,32(1):377-385
The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0-3.06), fuels (C1-C12), and pressures (20-760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C3 and C4 fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C3 and C4 species, were examined. Combination reactions of C3 species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C4H5 radicals are produced directly from the fuel, and in the n-decane flame where C4H5 radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins. 相似文献
259.
Flame dynamics 总被引:1,自引:0,他引:1
Moshe Matalon 《Proceedings of the Combustion Institute》2009,32(1):57-82
This lecture describes recent theoretical developments associated with the dynamics of flames, obtained primarily by exploiting the various temporal and length scales involved in the combustion process. In premixed flames the focus is on flame-flow interactions that occur during the nonlinear development of hydrodynamically unstable large-scale flames, or during the propagation of curved flames in two-dimensional channels. The second part of the paper deals with non-premixed and partially premixed flames, where the focus is on understanding the nature of diffusive-thermal instabilities including the effect of thermal expansion, and on stabilization mechanisms of edge flames, which possess characteristics of both premixed and diffusion flames. The results presented in this talk illustrate how simplified models, when analyzed to their extreme, yield predictions of qualitative nature with physical insight that have advanced our understanding of combustion. This insight can be used to guide the experimental efforts, explain observations and validate large-scale numerical simulations. 相似文献
260.
Hyperacceleration effects on turbulent combustion in premixed step-stabilized flames 总被引:1,自引:0,他引:1
Experimental results are presented from an investigation of the effects of large transverse accelerations on flame propagation and blowout limits in premixed step-stabilized flames. The accelerations, which exceed ±10,000 g in the present study, induce large body forces on the high-density reactants and low-density products. These body forces can substantially alter the flame propagation mechanisms and dramatically increase the flame blowout limits. Sustained centripetal accelerations ac ≡ U2/R are created by flowing a premixed propane–air reactant stream with equivalence ratios 0.7 Φ 1.9 at various speeds U through a semicircular channel with radius R. A backward-facing step of height h on the radially outer (ac > 0) or inner (ac < 0) wall stabilizes the flame. For ac > 0 the acceleration acts to force high-density reactants into the recirculation zone and low-density products into the reactant stream, while ac < 0 forces hot products into the recirculation zone and impedes cold reactants from entering this zone. An otherwise identical straight channel provides corresponding baseline (ac = 0) results for comparison. The flow speed U, equivalence ratio Φ, and step height h are systematically varied for ac = 0, ac > 0, and ac < 0. Shadowgraph and chemiluminescence imaging show that as ac→ +∞ the propagation of the flame across the channel becomes independent of the flame burning velocity and instead is primarily due to large-scale “centrifugal pumping” driven by the induced body forces. For ac → −∞ the body forces effectively segregate reactants and products to produce a nearly flat flame. In both cases, for large |ac| values the resulting blowout limits can be substantially higher than those at ac = 0. 相似文献