首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   72篇
  国内免费   3篇
化学   68篇
晶体学   7篇
力学   174篇
数学   36篇
物理学   582篇
  2023年   5篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   8篇
  2018年   6篇
  2017年   12篇
  2016年   17篇
  2015年   14篇
  2014年   21篇
  2013年   17篇
  2012年   13篇
  2011年   44篇
  2010年   41篇
  2009年   137篇
  2008年   157篇
  2007年   84篇
  2006年   85篇
  2005年   34篇
  2004年   19篇
  2003年   30篇
  2002年   23篇
  2001年   17篇
  2000年   18篇
  1999年   12篇
  1998年   13篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有867条查询结果,搜索用时 0 毫秒
71.
72.
In the present study, a whole heat exchanger with a hydraulic diameter of 2.3 mm is tested, which is a minichannel heat exchanger according to the Kandlikar classification. This is a louvered fin and flat tube heat exchanger currently used in car cooling systems, also known as radiator. A glycol-water mixture (60/40 in volume) circulates through the tubes at flows ranging from 100 to 7800 l/h and at a supply temperature of 90 °C. This fluid is cooled with ambient air at a temperature of 20 °C and at frontal air velocities varying between 0.5 and 7 m/s. The thermohydraulic performance of the heat exchanger is compared with the classical correlations given in the literature for the heat transfer and the friction factor calculation. On the glycol-water side the heat exchanger is characterized for Reynolds numbers from 30 to 8000. A first comparison is carried out with the correlations available in the literature with a purely predictive model by obtaining a predictive value with a systematic under prediction lower than 10%. In a second step a semi-empirical model is considered to identify the experimental heat transfer coefficients for this application.  相似文献   
73.
We propose a scheme for controllably entangling the ground states of five-state W-type atoms confined in a cavity and realizing swap gate and phase gate operations. In this scheme the cavity is only virtually excited and the atomic excited states are almost not occupied, so the produced entangled states and quantum logic operations are very robust against the cavity decay and atomic spontaneous emission.  相似文献   
74.
《力学快报》2020,10(4):213-223
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines. Friction factors play an important role in the accurate calculation of pressure drop. Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall, gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions. In this paper by modification of a friction model available in the literature, an improved semiempirical model is proposed. The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved. Pressure gradient and velocity profiles are validated against experimental data. Using the improved model, the pressure gradient deviation from experiments diminishes by about 3%; the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.  相似文献   
75.
We show that it is possible to generate Einstein-Podolsky-Rosen (EPR) entangled radiation using an atomic reservoir controlled by coherent population trapping. A beam of three-level atoms is initially prepared in nearcoherent population trapping (CPT) state and acts as a long-lived coherence-controlled reservoir. Four-wave mixing leads to amplification of cavity modes resonant with RabJ sidebands of the atomic dipole transitions. The cavity modes evolve Jnto an EPR state, whose degree of entanglement is controlled by the intensities and the frequencies of the driving fields. This scheme uses the long-lived CPT coherence and is robust against spontaneous emission of the atomic beam. At the same time, this scheme is implemented in a one-step procedure, not in a two-step procedure as was required in Phys. Rev. Lett. 98 (2007) 240401.  相似文献   
76.
It is demonstrated theoretically that the absorptivity of bulk shear sagittal waves by an ultra-thin layer of viscous fluid between two different elastic media has a strong maximum (in some cases as good as 100%) at an optimal layer thickness. This thickness is usually much smaller than the penetration depths and lengths of transverse and longitudinal waves in the fluid. The angular dependencies of the absorptivity are demonstrated to have significant and unusual structure near critical angles of incidence. The effect of non-Newtonian properties and non-uniformities of the fluid layer on the absorptivity is also investigated. In particular, it is shown that the absorption in a thin layer of viscous fluid is much more sensitive to non-zero relaxation time(s) in the fluid layer than the absorption at an isolated solid-fluid interface.  相似文献   
77.
《Comptes Rendus Mecanique》2017,345(9):642-659
Intermittencies are commonly observed in fluid mechanics, and particularly, in pipe flows. Initially observed by Reynolds (1883), it took one century for reaching a rather full understanding of this phenomenon whose irregular dynamics (apparently stochastic) puzzled hydrodynamicists for decades. In this brief (non-exhaustive) review, mostly focused on the experimental characterization of this transition between laminar and turbulent regimes, we present some key contributions for evidencing the two concomittant and antagonist processes that are involved in this complex transition and were suggested by Reynolds. It is also shown that a clear explicative model was provided, based on the nonlinear dynamical systems theory, the experimental observations in fluid mechanics only providing an applied example, due to its obvious generic nature.  相似文献   
78.
This paper develops a theoretical analysis of a Bingham fluid in slipping squeeze flow. The flow field decomposition consists in combining a central extensional flow zone in the plane of symmetry and shear flow zones near the plates. It is also considered that the slipping zone is located around a central sticking zone as previously shown from experiments. It is assumed that the shear stress at the plates is constant in the slipping zone and equals a fixed friction yield value. The squeeze force required to compress a Bingham fluid under the slipping behaviour as well as the radial evolution of the transition point between both sticking and slipping zones are finally determined.  相似文献   
79.
The traveling performance of off-the-road vehicles, such as construction machinery and exploration rovers, significantly depends on the interaction between the ground and the traveling mechanism, since inelastic ground deformation and frictional sliding phenomena are induced by the vehicle’s movement. In general, a tread surface causes anisotropic frictional interaction behavior on a macroscopic scale. In this study, an acceptable frictional interaction model was implemented to finite element method to rationally examine the anisotropic frictional interaction behavior between the tire and the ground. Finite element analysis of the single tire traveling performance, including certain slippage and side slip (skid), was then carried out to examine the effect of the anisotropic frictional interaction on the numerical results for the drawbar-pull and side force.  相似文献   
80.
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号