首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   7篇
  国内免费   174篇
化学   772篇
力学   23篇
综合类   5篇
数学   2篇
物理学   115篇
  2023年   1篇
  2022年   12篇
  2021年   9篇
  2020年   18篇
  2019年   8篇
  2018年   7篇
  2017年   22篇
  2016年   33篇
  2015年   29篇
  2014年   17篇
  2013年   86篇
  2012年   32篇
  2011年   43篇
  2010年   53篇
  2009年   62篇
  2008年   55篇
  2007年   57篇
  2006年   60篇
  2005年   39篇
  2004年   42篇
  2003年   36篇
  2002年   23篇
  2001年   21篇
  2000年   24篇
  1999年   23篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   8篇
  1994年   6篇
  1993年   13篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
排序方式: 共有917条查询结果,搜索用时 15 毫秒
101.
In this work, a flame-retardant polypropylene(PP)/ramie fiber(RF) composite was prepared. The ramie fibers were wrapped chemically by a phosphorus- and nitrogen-containing flame retardant(FR) produced via in situ condensation reaction so as to suppress their candlewick effect. Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM) demonstrated that the ramie fibers wrapped chemically by FR(FR-RF) were obtained successfully. Thermogravimatric test showed that the PP/FR-RF composite had more residue and better thermal stability at high temperatures than the PP/RF composite. Cone calorimeter(CC) results indicated that the peak of heat release rate(PHRR) and total heat release(THR) correspondingly decreased by 23.4% and 12.5% compared with the values of neat PP/RF. The PP/FR-RF composite created a continuous and compact char layer after the combustion. Combining FTIR analysis of char residue after CC test with heat conduction coefficient results, it could be concluded that the charring of FR on RF greatly weakened the candlewick effect of RF, and more char residue in the RF domain facilitated the formation of more continuous and compact char layer in the whole combustion zone, consequently protected PP composites during combustion, resulting in the better flame retardancy of PP/FR-RF composite than that of PP/RF composite.  相似文献   
102.
郭少云 《高分子科学》2015,33(7):1028-1037
In this work, the effects of annealing conditions on the microstructure of polypropylene(PP) precursor films and further on the porous structure and permeability of stretched membranes were investigated. Combinations of WAXD, FTIR, DSC and DMA results clearly showed the crystalline orientation and crystallinity of the precursor film increased with annealing temperature, while the molecular chain entanglements in the amorphous phase decreased. Changes in the deformation behavior suggested more lamellar separation occurred for the films annealed at higher temperatures. Surface morphologies of the membranes examined by SEM revealed more pore number and uniform porous structure as the annealing temperature increased. In accordance with the SEM results, the permeability of the membranes increased with annealing temperature. On the other hand, it was found that 10 min was almost enough for the annealing process to obtain the microporous membranes with an optimal permeability.  相似文献   
103.
孟晴晴  王彬  潘莉  李悦生  马哲 《高分子学报》2017,(11):1762-1772
合成了一系列高分子量、窄分子量分布且高等规度,含有不同―NR_3~+X~-离子基团含量的聚丙烯离聚体(iPP-NR_3~+X~-).以PP/IUD共聚物作为反应中间体,与三乙胺或N-甲基咪唑氨化得到聚丙烯离聚体.通过离子交换反应制备不同反离子的N-甲基咪唑聚丙烯离聚体,包括双三氟甲基磺酰亚胺根离子(Tf_2N~-)、四氟硼酸根离子(BF_4~-)和六氟磷酸根离子(PF_6~-).热重分析结果发现N-甲基咪唑聚丙烯离聚体的热稳定性明显优于三乙胺聚丙烯离聚体,表明不含β-H的N-甲基咪唑聚丙烯离聚体具有较高的热稳定性.同时,聚丙烯离聚体的表面亲水性得到明显改善.并且,聚丙烯离聚体的断裂伸长率也得到显著提高,最高达到900%.比较不同反离子聚丙烯离聚体的屈服强度和断裂强度发现I~-聚丙烯离聚体具有最优的力学性能.  相似文献   
104.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends.  相似文献   
105.
Ammonium polyphosphate (APP)/polypropylene (PP) composites were prepared by melt blending and extrusion in a twin-screw extruder. APP was first modified by a silane coupling agent KH-550 then added to polypropylene. The surface modification of APP by the coupling agent decreased its water solubility and its interface compatibility with the PP matrix. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) were used to characterize the flame retardant property and the thermal stability of the composites. The addition of APP improved the flame retardancy of PP remarkably. The crystal structures of APP/PP composites were characterized by X-ray diffraction (XRD). The results indicated that β-crystal phase PP may be formed. The structures and morphologies of APP, KH-550/APP and APP/PP composites were characterized by field-emission scanning electron microscope (FESEM). The mechanical property tests showed good mechanical properties of composite materials. Compared with unmodified one, the impact strength, tensile strength and elongation of modified APP/PP were all improved.  相似文献   
106.
In order to solve the “candlewick effect” caused by glass fibers, which results in the decrease of flame retardancy of flame-retardant long-glass-fiber-reinforced polypropylene (LGFPP) systems, and the deterioration of mechanical properties caused by adding an additional amount of flame retardants compared with flame-retardant non-glass-fiber-reinforced polypropylene systems so as to keep a same flame retardancy, a novel intumescent flame retardant (IFR) system, which is composed of a charring agent (CA), ammonium polyphosphate (APP) and organically-modified montmorillonite (OMMT), was used to flame retard LGFPP. The thermal stability, combustion behavior, char formation, flame retardant mechanism and mechanical properties of the IFR-LGFPP samples were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, cone calorimeter test, scanning electronic microscopy, and mechanical property tests. When the content of IFR is 20 wt%, the LOI value of IFR-LGFPP reaches 31.3, and the vertical burning test reaches UL-94 V-0 rating, solving the “candlewick effect” caused by long glass fiber without additional amount of the IFR. All the relevant cone calorimeter parameters also show that IFR-LGFPP has much better flame-retardant behaviors than LGFPP. Furthermore, the mechanical properties of IFR-LGFPP almost remain unchanged in comparison with those of LGFPP containing no IFR. The flame retardant mechanism was also discussed.  相似文献   
107.
The hydrocarbon plus fractions that comprise a significant portion of naturally occurring hydrocarbon fluids create major problems when determining the thermodynamic properties and the volumetric behavior of these fluids by equations of state. These problems arise due to the difficulty of properly characterizing the plus fractions (heavy ends). Proper characterization of the heavier components is important when cubic equations of state and/or solid formation thermodynamic models are used to describe complex phase behavior of reservoir fluids. The effect of heavy fractions characterization on thermodynamic modeling of wax precipitation has been investigated using different models including Won, Pan and proposed models. In order to characterize the plus fraction (heavier part) as a series of pseudocomponents, a probability model that expresses the mole fraction as a continuous function of the molecular weight has been used. The study has been conducted using several mixtures. Two different SCN (single carbon number), C7+C7+ and C10+C10+ were chosen. The Chosen SCN were distributed to multi-components of five, six, and/or ten using continuous function and Gaussian quadrature method. The results showed that the fractioning is required to be able to predict wax precipitation. Distribution of C10+C10+ using a proper distribution function has shown improvement in predictions of WAT and the amount of wax deposited in comparison with the characterization of C7+C7+ using semi-continuous approach. In predicting of WAT and the amount of wax build up the developed model showed superiority over the others.  相似文献   
108.
The effects of the coating amount of surfactant and the particle concentration on the impact strength of polypropylene (PP)/CaCO3 nanocomposites were investigated. Nanocomposites prepared with monolayer-coated CaCO3 nanoparticles had the best mechanical properties, including Young’s modulus, tensile yield stress and impact strength because of the good dispersion of the nanoparticles in the polymer matrix. In addition, the good dispersibility of the monolayer-coated nanoparticles allowed us to study the effects of particle concentration on the impact strength of the nanocomposites. H-PP and E-PP, which were the low and high molecular weight PPs, respectively, were used as polymer matrices. Critical particle concentrations of 10 and 25 wt% corresponding to an abrupt increase in the impact toughness were determined for the E-PP and H-PP nanocomposites, respectively. Good particle dispersion in a polymer matrix is the prerequisite for the calculation of the critical ligament thickness using the critical particle concentration. We propose that the observed critical ligament thickness actually corresponds to the critical thickness at which the plane-strain to plane-stress transition occurs. In addition, the critical ligament thickness of a nanocomposite depends on the properties of the polymer matrix, such as molecular weight, even for a given type of polymer.  相似文献   
109.
Complexes of titanium(IV) with bulky phenolic ligands such as 2‐tert‐butyl‐4 methylphenol, 2, 4‐di‐tert‐butyl phenol and 3,5‐di‐tert‐butyl phenol were prepared and characterized. These catalyst precursors, formulated as [Ti(OPh*)n(OPri)4?n] (OPh* = substituted phenol), were found to be active in polymerization of ethylene at higher temperatures in combination with ethylaluminum sesquichloride (Et3Al2Cl3) as co‐catalyst. It was observed that the reaction temperature and ethylene pressure had a pronounced effect on polymerization and the molecular weight of polyethylene obtained. In addition, this catalytic system predominantly produced linear, crystalline ultra‐low‐molecular‐weight polyethylenes narrow dispersities. The polyethylene waxes obtained with this catalytic system exhibit unique properties that have potential applications in surface coating and adhesive formulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
110.
《European Polymer Journal》2004,40(4):679-684
Commercial-grade polypropylene was modified with a specific nucleation agent based on an amide of dicarboxylic acid, which promotes crystallization predominantly in the β-phase. The resulting material was used as a matrix for composites containing 10%, 20%, and 30% (by weight) of different calcium carbonate fillers. These fillers differed in particle size and surface treatment. The β-phase content, morphology and tensile mechanical properties were investigated. A distinct β-nucleation activity was found with surface-treated fillers; nevertheless, to obtain stiff and reasonably ductile composite materials, a matrix containing a critical nucleant concentration (0.03 wt%) was necessary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号