首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2592篇
  免费   281篇
  国内免费   189篇
化学   1961篇
晶体学   25篇
力学   14篇
综合类   5篇
数学   19篇
物理学   1038篇
  2023年   27篇
  2022年   60篇
  2021年   100篇
  2020年   110篇
  2019年   78篇
  2018年   65篇
  2017年   67篇
  2016年   110篇
  2015年   109篇
  2014年   86篇
  2013年   193篇
  2012年   92篇
  2011年   96篇
  2010年   73篇
  2009年   132篇
  2008年   116篇
  2007年   181篇
  2006年   162篇
  2005年   91篇
  2004年   85篇
  2003年   109篇
  2002年   106篇
  2001年   91篇
  2000年   51篇
  1999年   75篇
  1998年   69篇
  1997年   53篇
  1996年   36篇
  1995年   31篇
  1994年   30篇
  1993年   20篇
  1992年   31篇
  1991年   20篇
  1990年   23篇
  1989年   25篇
  1988年   23篇
  1987年   12篇
  1986年   27篇
  1985年   17篇
  1984年   19篇
  1983年   13篇
  1982年   14篇
  1981年   15篇
  1980年   18篇
  1979年   17篇
  1978年   12篇
  1977年   13篇
  1976年   18篇
  1975年   9篇
  1973年   13篇
排序方式: 共有3062条查询结果,搜索用时 390 毫秒
991.
A series of germanium‐containing triangular molecules have been studied by density functional theory (DFT) calculations. The triangulene topology of the compounds provides for their high‐spin ground states and strong sign alternation of spin density and atomic charge distributions. High values of the exchange coupling constants witness ferromagnetic ordering of electronic structures of all studied triangulenes. The compounds bearing more electronegative atoms in a‐positions of the triangular networks possess higher aromatic character and stronger ferromagnetic ordering. © 2015 Wiley Periodicals, Inc.  相似文献   
992.
The displacement of molecular structures from their thermodynamically most stable state by imposition of various types of electronic and conformational constraints generates highly strained entities that tend to release the accumulated strain energy by undergoing either structural changes or chemical reactions. The latter case amounts to strain‐induced reactivity (SIR) that may enforce specific chemical transformations. A particular case concerns dynamic covalent chemistry which may present SIR, whereby reversible reactions are activated by coupling to a high‐energy state. We herewith describe such a dynamic covalent chemical (DCC) system involving the reversible imine formation reaction. It is based on the formation of strained macrocyclic bis‐imine metal complexes in which the macrocyclic ligand is in a high energy form enforced by the coordination of the metal cation. Subsequent demetallation generates a highly strained free macrocycle that releases its accumulated strain energy by hydrolysis and reassembly into a resting state. Specifically, the metal‐templated condensation of a dialdehyde with a linear diamine leads to a bis‐imine [1+1]‐macrocyclic complex in which the macrocyclic ligand is in a coordination‐enforced strained conformation. Removal of the metal cation by a competing ligand yields a highly reactive [1+1]‐macrocycle, which then undergoes hydrolysis to transient non‐cyclic aminoaldehyde species, which then recondense to a strain‐free [2+2]‐macrocyclic resting state. The process can be monitored by 1H NMR spectroscopy. Energy differences between different conformational states have been evaluated by Hartree–Fock (HF) computations. One may note that the stabilisation of high‐energy molecular forms by metal ion coordination followed by removal of the latter, offers a general procedure for producing out‐of‐equilibrium molecular states, the fate of which may then be examined, in particular when coupled to dynamic covalent chemical processes.  相似文献   
993.
The translocator protein (TSPO) is an integral membrane protein that interacts with a wide variety of endogenous ligands, such as cholesterol and porphyrins, and is also the target for several small molecules with substantial in vivo efficacy. When complexed with the TSPO‐specific radioligand (R)‐PK11195, TSPO folds into a rigid five‐helix bundle. However, little is known about the structure and dynamics of TSPO in the absence of high‐affinity ligands. By means of NMR spectroscopy, we show that TSPO exchanges between multiple conformations in the absence of (R)‐PK11195. Extensive motions on time scales from pico‐ to microseconds occur all along the primary sequence of the protein, leading to a loss of stable tertiary interactions and local unfolding of the helical structure in the vicinity of the ligand‐binding site. The flexible nature of TSPO highlights the importance of conformational plasticity in integral membrane proteins.  相似文献   
994.
Design of the nanostructures based on membrane proteins (the key functional elements of biomembranes) and colloid nanoparticles is a fascinating field at the interface of biochemistry and colloids, nanotechnology and biomedicine. The review discusses the main achievements in the field of ultrathin films prepared from bacterial reaction center proteins and light-harvesting complexes, as well as these complexes tagged with quantum dots. The principles of preparation of these thin films and their structure and properties at different interfaces are described; as well as their characteristics estimated using a combination of the modern interfacial techniques (absorption and fluorescence spectroscopy, atomic force and Brewster angle microscopy, etc.) are discussed. Further approaches to develop the nanostructures based on the membrane proteins and quantum dots are suggested. These supramolecular nanostructures are promising prototypes of the materials for photovoltaic, optoelectronic and biosensing applications.  相似文献   
995.
Models going beyond the rigid‐rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium‐to‐large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first‐order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 The Authors International Journal of Quantum Chemistry Published by Wiley Periodicals, Inc.  相似文献   
996.
The reaction of iridium powder with an excess of selenium and SeBr4 yielded lustrous, vermillion crystals of the mononuclear iridium complex [IrBr3(SeBr2)3]. The transition metal is coordinated octahedrally by three SeBr2 and three bromide ligands with facial or meridional configuration. Three different modifications were obtained under similar conditions: a‐fac‐IrBr3(SeBr2)3, space group P$\bar{1}$ , with a = 789.4(1) pm, b = 830.4(1) pm, c = 1334.4(1) pm, α = 81.634(5)°, β = 84.948(5)°, γ = 67.616(4)°; m‐fac‐IrBr3(SeBr2)3, space group P21/n, with a = 1205.3(1) pm, b = 962.4(1) pm, c = 1383.9(1) pm, β = 91.114(3)°; mer‐IrBr3(SeBr2)3, space group P21/n with a = 859.7(1) pm, b = 1284.3(1) pm, c = 1437.5(1) pm, β = 94.427(3)°. A lower bromine content in the starting composition resulted in shiny, deep‐red crystals of [Se9(IrBr3)2]. X‐ray diffraction on a single‐crystal revealed a tetragonal lattice (space group I41/a) with a = 1245.4(1) pm and c = 2486.8(1) pm at 296(1) K. In the [Se9(IrBr3)2] complex, a crown‐shaped uncharged Se9 ring coordinates two iridium(III) cations as a bridging bis‐tridentate ligand. Three terminal bromide ions complete the distorted octahedral coordination of each transition metal atom.  相似文献   
997.
The idea of planar tetracoordinate carbon (ptC) was considered implausible for a hundred years after 1874. Examples of ptC were then predicted computationally and realized experimentally. Both electronic and mechanical (e.g., small rings and cages) effects stabilize these unusual bonding arrangements. Concepts based on the bonding motifs of planar methane and the planar methane dication can be extended to give planar hypercoordinate structures of other chemical elements. Numerous planar configurations of various central atoms (main‐group and transition‐metal elements) with coordination numbers up to ten are discussed herein. The evolution of such planar configurations from small molecules to clusters, to nanospecies and to bulk solids is delineated. Some experimentally fabricated planar materials have been shown to possess unusual electrical and magnetic properties. A fundamental understanding of planar hypercoordinate chemistry and its potential will help guide its future development.  相似文献   
998.
The isolation and characterization of a trans‐oxasilacycloheptene is reported. Single‐crystal X‐ray crystallographic studies indicate a high level of strain and deviation from ideal geometry. Reactions with several electrophiles demonstrated the nucleophilicity of the C?C double bond, affording oxasilacycloheptane and tetrahydrofuran products as single diastereomers.  相似文献   
999.
Small‐molecule‐based multimodal and multifunctional imaging probes play prominent roles in biomedical research and have high clinical translation ability. A novel multimodal imaging platform using base‐catalyzed double addition of thiols to a strained internal alkyne such as bicyclo[6.1.0]nonyne has been established in this study, thus allowing highly selective assembly of various functional units in a protecting‐group‐free manner. Using this molecular platform, novel dual‐modality (PET and NIRF) uPAR‐targeted imaging probe: 64Cu‐CHS1 was prepared and evaluated in U87MG cells and tumor‐bearing mice models. The excellent PET/NIRF imaging characteristics such as good tumor uptake (3.69 %ID/g at 2 h post‐injection), high tumor contrast, and specificity were achieved in the small‐animal models. These attractive imaging properties make 64Cu‐CHS1 a promising probe for clinical use.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号