首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2592篇
  免费   281篇
  国内免费   189篇
化学   1961篇
晶体学   25篇
力学   14篇
综合类   5篇
数学   19篇
物理学   1038篇
  2023年   27篇
  2022年   60篇
  2021年   100篇
  2020年   110篇
  2019年   78篇
  2018年   65篇
  2017年   67篇
  2016年   110篇
  2015年   109篇
  2014年   86篇
  2013年   193篇
  2012年   92篇
  2011年   96篇
  2010年   73篇
  2009年   132篇
  2008年   116篇
  2007年   181篇
  2006年   162篇
  2005年   91篇
  2004年   85篇
  2003年   109篇
  2002年   106篇
  2001年   91篇
  2000年   51篇
  1999年   75篇
  1998年   69篇
  1997年   53篇
  1996年   36篇
  1995年   31篇
  1994年   30篇
  1993年   20篇
  1992年   31篇
  1991年   20篇
  1990年   23篇
  1989年   25篇
  1988年   23篇
  1987年   12篇
  1986年   27篇
  1985年   17篇
  1984年   19篇
  1983年   13篇
  1982年   14篇
  1981年   15篇
  1980年   18篇
  1979年   17篇
  1978年   12篇
  1977年   13篇
  1976年   18篇
  1975年   9篇
  1973年   13篇
排序方式: 共有3062条查询结果,搜索用时 31 毫秒
61.
Single crystals of [Ni(Phen)(iBu2PS2)2] (I) and [Ni(Phen)3](iBu2PS2)2 (III) compounds were grown, and their structures were determined by Xray diffraction analysis (CAD4 diffractometer, MoK radiation, 3336 F hkl , R = 0.0373 for I and 2575 F hkl for III). The crystals of complex I have a triclinic unit cell with the following parameters: a = 11.097(1) , b = 14.903(2) , c = 22.650(3); = 75.18(1)°, = 80.50(1)°, = 75.07(1)°, V = 3479.2(7)3, Z = 4, calc = 1.255 g/cm3, and space group 1; the crystals of III have a monoclinic unit cell with the following parameters: a = 19.010(3), b = 15.481(1) , c = 17.940(3); = 97.58(1)°, V = 5233.5(12)3, Z = 4, calc = 1.292 g/cm3, and space group C2/c. The structure of complex I is built from mononuclear molecules, and the structure of III, from [Ni(Phen)3]2+ complex cations and i Bu2PS2 - outersphere anions. The NiN2S4 coordination polyhedra in the structure of I and NiN6 in the structure of III are distorted octahedra. Based on structural data, the interaction between the coordinated Phen molecules of complexes I, [Ni(Phen)2(iBu2PS2)](iBu2PS2) (II), and III is considered, as well as the packing modes of these complexes.  相似文献   
62.
The crystal structure of 4-cyclopropylacetanilide was investigated at room temperature (21C) and at –100C in order to determine the orientation of the phenyl ring with respect to the cyclopropane moiety and the effect of this substituent on the stereochemistry of the three-membered ring. The compound was chosen because it is one of the few species containing a simple phenyl ring as the sole cyclopropane ring substituent and whose crystals are suitable for X-ray diffraction at room temperature. The substance crystallizes in space groupP2l/c at either temperature (no phase transitions) with cell constants: (at 21C)a=9.725(2),b=10.934(3), andc=9.636(2) å,=106.13(1);V=984.21 å3 andd(calc;z=4)=1.182 g cm–3. The relevant parameters for the –100C structure area=9.557(4),b=10.980(2), andc=9.641(2) å,=106.34(3);V=970.76 å3 and d(calc;z=4)=1.199 g cm–3. Final values wereR(F)=0.042, Rw=0.035, using unit weights, and its nonhydrogen atoms were used to phase the low-temperature data, whose final discrepancy indices wereR(F)=0.051,R w =0.061. The phenyl substituent is almost exactly in the bisecting conformation with respect to the C-C-C angle at the point of attachment to cyclopropane and conjugative effects are clearly evident in the lengths of the cyclopropane ring [1.494(3), 1.498(3), and 1.474(4) å, the later being the distal bond]. If one omits the terminal methylene fragments at C10 and C11, the atoms comprising the acetanilide fragment and the substituted carbon of the cyclopropane ring lie in a nearly perfect plane. Molecular mechanics as well as semiempirical (AM1) calculations were carried out in order to determine the structure of the energy-minimized configurations in the two computational environments. The molecular conformations thus obtained are close to that experimentally observed from the X-ray diffraction experiment. In both theoretical models, the lowest energy conformation is that in which the plane of the phenyl ring bisects the cyclopropane C-C-C angle as was experimentally observed. Finally, the shape of the conformational barrier as a function of the orientation of the plane of the phenyl ring was computed, giving a maximum barrier to rotation of 2.2 kcal/mol. Similar calculations were carried out for two other aryl cyclopropanes, whose rings (naphthalene and anthracene) cannot adopt the bisecting position. Comparisons of experimental geometrical parameters as well as of the barriers to rotation are presented.on leave at the University of Houston, 1995–1996.  相似文献   
63.
This article shows how to evaluate rotational symmetry numbers for different molecular configurations and how to apply them to transition state theory. In general, the symmetry number is given by the ratio of the reactant and transition state rotational symmetry numbers. However, special care is advised in the evaluation of symmetry numbers in the following situations: (i) if the reaction is symmetric, (ii) if reactants and/or transition states are chiral, (iii) if the reaction has multiple conformers for reactants and/or transition states and, (iv) if there is an internal rotation of part of the molecular system. All these four situations are treated systematically and analyzed in detail in the present article. We also include a large number of examples to clarify some complicated situations, and in the last section we discuss an example involving an achiral diasteroisomer.  相似文献   
64.
多支链烷基苯磺酸钠水溶液的表面性质   总被引:5,自引:0,他引:5  
王琳  张路  楚艳苹  赵濉  俞稼镛 《物理化学学报》2004,20(12):1451-1454
用自制的四种高纯度多支链烷基苯磺酸钠,研究了支链结构对其表面性质的影响.结果表明,随支链烷基碳数增加,临界胶束浓度降低,标准吸附自由能DGadӨ更负;但是,饱和吸附量Γmax却随支链烷基碳数增加而减小,且临界胶束浓度时的表面张力γcmc随吸附量减小而降低,表现出与一般表面活性剂不同的变化趋势.从多支链烷基苯磺酸钠的分子结构特点,解释了随支链烷基碳数增加Γmax和γcmc的变化规律,探讨了分子的独占面积(as)对Γmax及γcmc的影响.  相似文献   
65.
An exact solution of the Boltzmann equation for a binary mixture of colored Maxwell molecules is found. The solution corresponds to a nonequilibrium homogeneous steady state created by a nonconservative external force. Explicit expressions for the moments of the distribution function are obtained. By using information theory, an approximate velocity distribution function is constructed, which is exact in the limits of small and large field strengths. Comparison is made between the exact energy flux and the one obtained from the information theory distribution.  相似文献   
66.
There are three general classes of hydrate inclusion compounds: the gas hydrates, the per-alkyl onium salt hydrates, and the alkylamine hydrates. The first are clathrates, the second are ionic inclusion compounds, the third are semi-clathrates. Crystallization occurs because the H2O molecules, like SiO2, can form three-dimensional four-connected nets. With water alone, these are the ices. In the inclusion hydrates, nets with larger voids are stabilized by including other guest molecules. Anions and hydrogen-bonding functional groups can replace water molecules in these nets, in which case the guest species are cations or hydrophobic moieties of organic molecules. The guest must satisfy two criteria. One is dimensional, to ensure a comfortable fit within the voids. The other is functional. The guest molecules cannot have either a single strong hydrogen-bonding group, such as an amide or a carboxylate, or a number of moderately strong hydrogen-bonding groups, as in a polyol or a carbohydrate.The common topological feature of these nets is the pentagonal dodecahedra: i.e., 512-hedron. These are combined with 51262-hedra, 51263-hedra, 51264-hedra and combinations of these polyhedra, to from five known nets. Two of these are the well-known 12 and 17 Å cubic gas hydrate structures,Pm3n, Fd3m; one is tetragonal,P4 2/mnm, and two are hexagonal,P6 3/mmc andP6/mmm. The clathrate hydrates provide examples of the two cubic and the tetragonal structures. The alkyl onium salt hydrates have distorted versions of thePm3n cubic, the tetragonal, and one of the hexagonal structures. The alkylamine hydrate structures hitherto determined provide examples of distorted versions of the two hexagonal structures.There are also three hydrate inclusion structures, represented by single examples, which do not involve the 512-hedra. These are 4(CH3)3CHNH2·39H2O which is a clathrate; HPF6·6H2O and (CH3)4NOH·5H2O which are ionic-water inclusion hydrates. In the monoclinic 6(CH3CH2CH2NH2)·105H2O and the orthorhombic 3(CH2CH2)2NH·26H2O, the water structure is more complex. The idealization of these nets in terms of the close-packing of semi-regular polyhedra becomes difficult and artificial. There is an approach towards the complexity of the water salt structures found in the crystals of proteins.  相似文献   
67.
Ball-like molecules with strong dipoles (labels) were mixed with synthetic polyisoprene (IR305) in low concentrations (<1%) and measured dielectrically in the frequency range 10–2–107 Hz and the temperature range –70–0°C (glass relaxation region). Calorimetric measurements showed that this type of label has a plasticizing effect on the polymeric matrix. The dielectric measurements showed that these ball-like molecules relax through cooperative rotations with the polymeric segments and at the same relaxation frequency. In addition, the label molecules showed a high-frequency local relaxation process. The relaxation strength ratio of the local process (X local) to the total relaxation strength of the label was found to be dependent on the volume as well as on the shape of the label. A comparison between the relaxation behaviors of the ball-and rod-like molecules, having the same volume, showed that the length of the label is also an important parameter for the determination of the local contribution as well as of the cooperative relaxation mechanism of the label. The label relaxation process is discussed in relation to the molecular packing of the host polymer.  相似文献   
68.
Summary The virial theorem for a molecule in the relativistic clamped-nuclei approximation is derived. The individual energy contributionsA (momentum energy),B (mass energy),T=A+B (kinetic energy) andV (potential energy) are expressed in terms ofE, E/R (derivate w.r.t. the nuclear coordinates) and the relativistic correction E/2 (derivative w.r.t. Sommerfield's fine-structure constant ). IfE and E/R are known as functions of , then all individual energy terms are also known as functions of . As an example, numerical results for H 2 + are presented. The relativistic and nonrelativistic potential energy curves and the paradoxical behavior of their different contributions are analyzed and interpreted in both the largeR and shortR ranges.Dedicated to Professor W. Kutzelnigg on the occasion of his 60th birthday  相似文献   
69.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route to high-spin and anisotropic molecules based on hexacyanometalate [M(CN)(6)](3-) cores. Part 1 of this series was devoted to isotropic heptanuclear clusters; herein, we discuss the nuclearity and the structural anisotropy of nickel(II) derivatives. By changing either the stoichiometry, the nature of the terminal ligand, or the counterion, it is possible to tune the nuclearity of the polynuclear compounds and therefore to control the structural anisotropy. We present the synthesis and the characterisation by mass spectrometry, X-ray crystallography and magnetic susceptibility of bi-, tri-, tetra-, hexa- and heptanuclear species [M(CN)(n)(CN-M'L)(6-n)](m+) (with n=0-5; M=Cr(III), Co(III), M'=Ni(II); L=pentadentate ligand). Thus, with M=Cr(III), d(3), S=3/2, a dinuclear complex [Cr(III)(CN)(5)(CN-NiL(n))](9+), (L(n)=polydentate ligand) was built and characterised, showing a spin ground state, S(G)=5/2, with a ferromagnetic interaction J(Cr,Cu)=+18.5 cm(-1). With M=Co(III) (d(6), S=0) were built di-, tri-, tetra-, hexa and hepanuclear CoNi species: CoNi, CoNi(2), CoNi(3), CoNi(5) and CoNi(6). By a first approximation, they behave as one, two, three, five and six isolated nickel(II) complexes, respectively, but more accurate studies allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号