首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  国内免费   3篇
化学   17篇
力学   32篇
物理学   11篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2011年   9篇
  2010年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有60条查询结果,搜索用时 695 毫秒
31.
Summary This report was conceived as a source for the relations between five pneumatic parameters of carrier gas-inlet and outlet pressure, inlet and outlet velocity, and average velocity. Any pair of these parameters can be independent while the remaining three can be expressed as functions of the independent pair. As the total number of the independent pairs is ten, thirty different functions describing relations between arbitrary independent pairs and dependent parameters can be identified. All thirty were derived below together with the complete set of bounds for variations of independent parameters. To derive some relations, a third order rational equation had to be solved. Some properties of that solution are discussed. A simple case of vacuum operations with zero outlet pressure has also been considered.  相似文献   
32.
Wang X  Chen X  Ma X  Kong X  Xu Z  Wang J 《Talanta》2011,84(2):565-571
A novel fluid mixing strategy was developed which significantly enhanced the efficiency of DNA hybridization. A pneumatic micro-mixing device consisting of two pneumatic chambers and an underneath DNA microarray chamber was built up. The fluid in the array chamber was pneumatically pumped alternately by the two pneumatic chambers. The chaotic oscillatory flow caused by the pumping greatly intensified the fluidic mixing. A homogeneous distribution of the tracer dye solution in the microarray chamber was observed after 2 s mixing with a pumping frequency of 24 Hz. Microarray DNA hybridization was substantially accelerated using this device, and the fluorescence intensity showed a plateau after oscillating 30 s at room temperature. The corresponding signal level of the dynamic hybridization was 12.5-fold higher than that of the static hybridization performed at 42 °C. A signal-to-noise ratio of 117 was achieved and the nonspecific adsorption of the targets to the sample array was minimized, which might be attributed to the strong shearing force generated during the pneumatic mixing process.  相似文献   
33.
袁文全  巩岩  张巍  王学亮  倪明阳  赵磊 《光子学报》2011,(10):1526-1530
采用有限元方法对高精度物镜波纹管致动器的几何非线性变形进行了分析,并引入线性度对波纹管致动器的性能进行了评估.通过有限元方法分析了常见的U型、S型、C型、方型及三角型波纹管的几何非线性变形,并结合最小二乘法,得到了上述各种波纹管致动器的行程及线性度.计算结果表明:在设计大行程波纹管致动器时,S型波纹管的线性度最好,为0...  相似文献   
34.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders.Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash(median particle diameter 30μm;particle density 2300kg/m~3;loosepoured bulk density 700kg/m~3) and white powder(median particle diameter 55 u.m;particle density1600kg/m~3;loose-poured bulk density 620kg/m~3) from dilute to fluidized dense-phase.Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations.It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections.However,both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s).This result could be attributed to the deceleration of particles while flowing through the bends,resulting in dampened particle fluctuation and turbulence.Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow(dense-phase),i.e.,there is a higher probability that the particles are concentrated toward the bottom of pipe,compared with dilute-phase or suspension flow(high velocity),where the particles could be expected to be distributed homogenously throughout the pipe bore(as the flow is in suspension).Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   
35.
This paper theoretically introduced the feasibility of changing the vibration characteristics of flexible plates by using bio-inspired, extremely light, and powerful Pneumatic Artificial Muscle (PAM) actuators. Many structural plates or shells are typically flexible and show high vibration sensitivity. For this reason, this paper provides a way to achieve active vibration control for suppressing the oscillations of these structures to meet strict stability, safety, and comfort requirements. The dynamic behaviors of the designed plates are modeled by using the finite element (FE) method. As is known, the output force vs. contraction curve of PAM is nonlinear generally. In this present finite element model, the maximum forces provided by PAM in different air pressure are adopted as controlling forces for applying for the plate. The non-linearity between the output force and displacement of PAM is avoided in this study. The dynamic behaviors of plates with several independent groups of controlling forces are observed and studied. The results show that the natural frequencies of the plate can be varying and the max amplitude decreases significantly if the controlling forces are applied. The present work also demonstrates the potential of the PAM actuators as valid means for damping out the vibration of flexible systems.  相似文献   
36.
Pneumatic conveying of coarse coal particles with various pipeline configurations and swirling intensities was investigated using a coupled computational fluid dynamics and discrete element method. A particle cluster agglomerated by the parallel-bond method was modeled to analyze the breakage of coarse coal particles. The numerical parameters, simulation conditions, and simulation results were experimentally validated. On analyzing total energy variation in the agglomerate during the breakage process, the results showed that downward fluctuation of the total particle energy was correlated with particle and wall collisions, and particle breakage showed a positive correlation with the energy difference. The correlation between the total energy variation of a particle cluster and particle breakage was also analyzed. Particle integrity presented a fluctuating upward trend with pipe bend radius and increased with swirling number for most bend radii. The degree of particle breakage differed with pipeline bending direction and swirling intensity: in a horizontal bend, the bend radius and swirling intensity dominated the total energy variations; these effects were not observed in a vertical bend. The total energy of the particle cluster exiting a bend was generally positively correlated with the bend radius for all conditions and was independent of bending direction.  相似文献   
37.
This paper presents a preliminary study of a previously unreported phenomenon of the “gas driven granular jump”, observed in the gas–solids flow within the pneumatic conveying system. From the phenomenological point of view, it resembles the already known processes such as hydraulic jumps in shallow water or granular jumps in granular flows in chutes or avalanches (although it seems most appropriate to explain it by analogy to a propagating granular bore). Clearly, unlike in classical phenomena of this type, the flow itself is driven by the aerodynamic forces related to the gas flow and the behaviour of the front of the “jump” is modified significantly by their presence. A series of high-speed camera visualisations are presented, which focus on this unusual behaviour of the flow on the border-line between cluster and stratified flow regimes in a horizontal pipe. Some similarities are drawn between the observed phenomenon and the broader class of problems exhibiting transition between super- and sub-critical flows. The fluid dynamical aspects and possible mechanisms behind the new phenomenon are discussed and the results obtained are compared quantitatively with simple theoretical models.  相似文献   
38.
A demountable design of the static high sensitivity ICP (SHIP) for optical emission spectrometry is presented, and its use as an excitation source with the introduction of wet aerosols was investigated. Aerosols were produced by standard pneumatic sample introduction systems, namely a cross flow nebulizer, Meinhard nebulizer and PFA low flow nebulizer, which have been applied in conjunction with a double pass and a cyclonic spray chamber. The analytical capabilities of these sample introduction systems in combination with the SHIP system were evaluated with respect to the achieved sensitivity. It was found that a nebulizer tailored for low argon flow rates (0.3–0.5 L min−1) is best suited for the low flow plasma (SHIP). An optimization of all gas flow rates of the SHIP system with the PFA low flow nebulizer was carried out in a two-dimensional way with the signal to background ratio (SBR) and the robustness as optimization target parameters. Optimum conditions for a torch model with 1-mm injector tube were 0.25 and 0.36 L min−1 for the plasma gas and the nebulizer gas, respectively. A torch model with a 2-mm injector tube was optimized to 0.4 L min−1 for the plasma gas and 0.44 L min−1 for the nebulizer gas. In both cases the SHIP system saves approximately 95% of the argon consumed by conventional inductively coupled plasma systems. The limits of detection were found to be in the low microgram per litre range and below for many elements, which was quite comparable to those of the conventional setup. Furthermore, the short-term stability and the wash out behaviour of the SHIP were investigated. Direct comparison with the conventional setup indicated that no remarkable memory effects were caused by the closed design of the torch. The analysis of a NIST SRM 1643e (Trace Elements in Water) with the SHIP yielded recoveries of 97–103% for 13 elements, measured simultaneously. Photo of the SHIP-III during operation  相似文献   
39.
The estimation of the blockage boundary for pneumatic conveying through a slit is of significant importance. In this paper, we investigate the characteristics for blockage of powder (48 μm average diameter) through a horizontal slit (1.6 m × 0.05 m × 0.002 m). The results show that the required critical solid mass flow rate increases as the superficial air velocity increases superficial air velocity. The solid loading ratio and superficial air velocity displayed a decreasing power law relationship. This finding agrees with existing theory and experimental results. However, a minimum inlet solid loading ratio exists. When the air velocity is greater than the corresponding air velocity of the minimum solid loading ratio, the solid loading ratio exhibits an increasing trend in power law. We also found that when the inlet conveying pressure increased, the critical solid mass flow rate required for blockage, the inlet solid loading ratio, and the minimum inlet solid loading ratio increased.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号