排序方式: 共有58条查询结果,搜索用时 0 毫秒
11.
12.
Stability is fundamental to ensure the operation of control system, but optimality is the ultimate goal to achieve the maximum performance. This paper investigates an event-triggered pinning optimal consensus control for switched multi-agent system (SMAS) via a switched adaptive dynamic programming (ADP) method. The technical contribution mainly lies in two aspects. On the one hand, in order to optimize the control performance and ensure the consensus, the switched local value function (SLVF) and the minimum-error switching law are constructed. Based on SLVF, an algorithm of switched ADP policy iteration is proposed, and its convergence and optimality are proved. On the other hand, considering that it is impractical to install a controller for each agent in reality, a pinning strategy is developed to guide the setting of the ADP controller, which can reduce the waste of control resources. A new condition is constructed to determine the minimum number of controlled vertices of the SMAS. Lastly, a numerical example is given to verify the effectiveness of the proposed method. 相似文献
13.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results. 相似文献
14.
We consider random walks Xn in Z+, obeying a detailed balance condition, with a weak drift towards the origin when Xn↗∞. We reconsider the equivalence in law between a random walk bridge and a 1+1 dimensional Solid-On-Solid bridge with a corresponding Hamiltonian. Phase diagrams are discussed in terms of recurrence versus wetting. A drift of the random walk yields a Solid-On-Solid potential with an attractive well at the origin and a repulsive tail at infinity, showing complete wetting for δ≤1 and critical partial wetting for δ>1. 相似文献
15.
D. Ahmad I. Park G.C. Kim J.H. Lee Z.-A. Ren Y.C. Kim 《Physica C: Superconductivity and its Applications》2009,469(15-20):1052-1054
The irreversibility line and flux pinning properties of high-Tc superconductor SmFeAsO0.85 were studied using DC magnetization data. Polycrystalline SmFeAsO0.85 was prepared in a high pressure synthesis apparatus under the pressure of 6 GPa. The results of DC susceptibility showed the superconducting transition at about 55 K. A critical current density Jc(B) was calculated using Bean’s critical state model. At low temperatures (20 K), Jc(B) showed a relatively high value with weak dependence on an applied magnetic field. At higher temperatures, a stronger dependence of the magnetic field was observed, which resulted from decrease in a critical current density probably due to the flux creep effect. The irreversibility line (IL) agreed well with the flux creep theory of Matsushita et al. A comparison of normalized pinning force density with the theoretical models showed that the irreversible behavior in SmFeAsO0.85 is dominated mainly by normal point pinning (δTc) and surface pinning mechanisms. 相似文献
16.
C. Stupperich-Sequeira K. Graf 《Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences》2013,19(4):263-276
Physico-chemical processes on the micro-scale require new modelling concepts because some effects become dominating that are negligible for macroscopic systems. This is illustrated by a new method for the production of micro-wells based on the placement of a small drop of toluene on a plate of polystyrene. After droplet evaporation, a micro-well is left. A mathematical model has been developed to understand the elementary processes of the micro-well formation. The model accounts for: (1) growth of the drop on the substrate, (2) evaporation process of the solvent, (3) dissolution of the substrate, (4) flow rate in the evaporating drop caused by the pinning effect, including the vertical velocity profile, and (5) increase in the concentration of dissolved material followed by precipitation. In the modelling and simulation process, it could be shown that the method of drop production also has a significant influence on the shape of the micro-wells. 相似文献
17.
Haifeng Zhang Kezan Li Xinchu Fu 《Communications in Nonlinear Science & Numerical Simulation》2010,15(2):182-188
Recently, the pinning control of complex dynamical networks to their homogeneous states has been studied by many researchers, most of the dynamical networks are continuous-time ones, i.e., their dynamical behavior can be described by ODEs. An interesting result is that, for a continuous-time network, its desired (homogeneous) state can be achieved by pinning some nodes with relatively large degrees (also called the specifically pinning scheme [Wang XF, Chen GR. Pinning control of scale-free dynamical networks. Physica A 2002;310:521–31]). Is this specifically pinning scheme also effective for the discrete-time dynamical networks? In this paper, we demonstrate that the pinning control for a discrete-time dynamical network is difficult, and sometimes it is impossible to achieve the desired state just by controlling the nodes with larger degrees. In order to control the discrete-time dynamical networks successfully, we may need to control all the nodes. Finally, we also consider how to extend the interval for the feedback gain d for successful control. 相似文献
18.
We consider wetting of a one-dimensional random walk on a half-line x≥0 in a short-ranged potential located at the origin x=0. We demonstrate explicitly how the presence of a quenched chemical disorder affects the pinning-depinning transition point.
For small disorders we develop a perturbative technique which enables us to compute explicitly the averaged temperature (energy)
of the pinning transition. For strong disorder we compute the transition point both numerically and using the renormalization
group approach. Our consideration is based on the following idea: the random potential can be viewed as a periodic potential
with the period n in the limit n→∞. The advantage of our approach stems from the ability to integrate exactly over all spatial degrees of freedoms in the
model and to reduce the initial problem to the analysis of eigenvalues and eigenfunctions of some special non-Hermitian random
matrix with disorder-dependent diagonal and constant off-diagonal coefficients. We show that even for strong disorder the
shift of the averaged pinning point of the random walk in the ensemble of random realizations of substrate disorder is indistinguishable
from the pinning point of the system with preaveraged (i.e. annealed) Boltzmann weight. 相似文献
19.
M. Inoue R. Fuger K. Higashikawa T. Kiss M. Namba S. Awaji K. Watanabe A. Ibi S. Miyata Y. Yamada T. Izumi 《Physica C: Superconductivity and its Applications》2010,470(20):1292-1294
We have investigated current transport property in Gd1Ba2Cu3O7−δ coated conductor with artificial pinning centers in a wide range of temperature, magnetic field, B up to 27 T, and field angle. Due to the additional c-axis correlated pins, critical current density, Jc in B//c was enhanced and the improvement was observed in wide range of B. On the other hand, around B⊥c below 65 K, the angular dependence of n-value showed a valley-like behavior, although the Jc was increasing. In addition, the temperature dependence of the pinning force density defined as Jc × B was not scaled on an expected master curve. These results indicate the pinning in B⊥c is governed by different mechanism below 65 K and high magnetic field. 相似文献
20.
Fe–Pt–MgO stacked storage layer constructed by [Fe–Pt/Fe–Pt–MgO/Fe–Pt] trilayered structure was proposed for a next-generation high-density perpendicular magnetic recording medium. The Fe–Pt–MgO composite middle layer was prepared by sputtering the Fe–Pt–MgO composite-type target including relatively large MgO content of 50 vol%. The Fe–Pt(0 0 1) seed layer deposited on MgO underlayer was effective in forming the ordered fct(0 0 1) phase for the Fe–Pt–MgO composite film. The reduction of transition jitter noise and the suppression of signal overlap were observed in the stacked-type medium with the Fe–Pt–MgO middle layer of 1 nm thickness. The improvement of recording properties is attributed to the pinning effect of magnetic domain wall by the Fe–Pt–MgO composite layer inserted into the middle of pure Fe–Pt storage layer. 相似文献