首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2047篇
  免费   435篇
  国内免费   186篇
化学   675篇
晶体学   12篇
力学   16篇
综合类   2篇
数学   28篇
物理学   1935篇
  2024年   3篇
  2023年   24篇
  2022年   51篇
  2021年   50篇
  2020年   69篇
  2019年   49篇
  2018年   47篇
  2017年   53篇
  2016年   66篇
  2015年   74篇
  2014年   90篇
  2013年   120篇
  2012年   79篇
  2011年   105篇
  2010年   109篇
  2009年   176篇
  2008年   121篇
  2007年   206篇
  2006年   222篇
  2005年   108篇
  2004年   115篇
  2003年   117篇
  2002年   85篇
  2001年   109篇
  2000年   78篇
  1999年   60篇
  1998年   74篇
  1997年   58篇
  1996年   43篇
  1995年   21篇
  1994年   25篇
  1993年   14篇
  1992年   11篇
  1991年   5篇
  1990年   9篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有2668条查询结果,搜索用时 15 毫秒
131.
On-surface metal-organic coordination provides a promising way for synthesizing different two-dimensional lattice structures that have been predicted to possess exotic electronic properties. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we studied the supramolecular self-assembly of 9,10-dicyanoanthracene (DCA) molecules on the Au(111) surface. Close-packed islands of DCA molecules and Au-DCA metal-organic coordination structures coexist on the Au(111) surface. Ordered DCA3Au2 metal-organic networks have a structure combining a honeycomb lattice of Au atoms with a kagome lattice of DCA molecules. Low-temperature STS experiments demonstrate the presence of a delocalized electronic state containing contributions from both the gold atom states and the lowest unoccupied molecular orbital of the DCA molecules. These findings are important for the future search of topological phases in metal-organic networks combining honeycomb and kagome lattices with strong spin-orbit coupling in heavy metal atoms.  相似文献   
132.
This report of the 2011 James L. Waters Symposium at Pittcon 2011 highlights the powerful imaging technologies of electron microscopy (EM) and ion microscopy (IM). The four speakers each provided a window into a specific subset of the field:
David Bell described the history, development, application, and commercialization of transmission EM (TEM) and scanning TEM (STEM);
David Martin presented the challenges and methodologies of imaging ordered polymers and biomaterials with TEM;
Joseph Michael explained the history of the commercialization of scanning EM (SEM) and its modern applications; and,
David Joy, who submitted his talk in absentia, provided a history of EM and a summary of the advantages of IM versus EM.
  相似文献   
133.
The effects of charged species on proton‐coupled electron‐transfer (PCET) reaction should be of significance for understanding/application of important chemical and biological PCET systems. Such species can be found in proximity of activated complex in a PCET reaction, although they are not involved in the charge transfer process. Reported here is the first study of the above‐mentioned effects. Here, the effects of Na+, K+, Li+, Ca2+, Mg2+, and Me4N+ observed in PCET reaction of ascorbate monoanions with hexacyanoferrate(III) ions in H2O reveal that, in presence of ions, this over‐the‐barrier reaction entered into tunneling regime. The observations are: a) dependence of the rate constant on the cation concentration, where the rate constant is 71 (at I = 0.0023), and 821 (at 0.5M K+), 847 (at 1.0M Na+), and 438 M ?1 s?1 (at 0.011M Ca2+); b) changes of kinetic isotope effect (KIE) in the presence of ions, where kH/kD=4.6 (at I = 0.0023), and 3.4 (in the presence of 0.5M K+), 3.3 (at 1.0M Na+), 3.9 (at 0.001M Ca2+), and 3.9 (at 0.001M Mg2+), respectively; c) the isotope effects on Arrhenius pre‐factor where AH/AD=0.97 (0.15) in absence of ions, and 2.29 (0.60) (at 0.5M Na+), 1.77 (0.29) (at 1.0M Na+), 1.61 (0.25) (at 0.5M K+), 0.42 (0.16) (at 0.001M Ca2+) and 0.16 (0.19) (at 0.001M Mg2+); d) isotope differences in the enthalpies of activation in H2O and in D2O, where ΔΔH?(D,H)=3.9 (0.4) kJ mol?1 in the absence of cations, 1.3 (0.6) at 0.5M Na+, 1.8 (0.4) at 0.5M K+, 1.5 (0.4) at 1.0M Na+, 5.5 (0.9) (at 0.001M Ca2+), and 7.9 (2.8) (at 0.001M Mg2+) kJ mol?1; e) nonlinear proton inventory in reaction. In the H2O/dioxane 1 : 1, the observed KIE is 7.8 and 4.4 in the absence and in the presence of 0.1M K+, respectively, and AH/AD=0.14 (0.03). The changes when cations are present in the reaction are explained in terms of termolecular encounter complex consisting of redox partners, and the cation where the cation can be found in a near proximity of the reaction‐activated complex thus influencing the proton/electron double tunneling event in the PCET process. A molecule of H2O is involved in the transition state. The resulting ‘configuration’ is more ‘rigid’ and more appropriate for efficient tunneling with Na+ or K+ (extensive tunneling observed), i.e., there is more precise organized H transfer coordinate than in the case of Ca2+ and Mg2+ (moderate tunneling observed) in the reaction.  相似文献   
134.
135.
For a reaction to proceed via tunneling mechanism, it is essential that the reactants will cross the potential barrier (EP), where its initial energy (E0) is below the potential barrier EP. Tunneling probability τ is defined as the probability of having momentum higher than km, where . In the momentum basis representation, τ can be directly calculated by integrating from the limit km to infinity, where is the wave function in the momentum space. Instead of the continuous basis, if we chose momentum grid space, τ can be expressed as . Our target here is to increase this τ by applying a polychromatic field, so that the reaction rate can be enhanced. By applying Simulated Annealing technique we have designed some polychromatic electric fields, spatially symmetric and asymmetric type, which enhances the tunneling rate in symmetric double well system and Eckart barrier confined in an infinite well.  相似文献   
136.
Compounds with diketopyrrolopyrrole (DPP) and thiophene moieties have attracted considerable attention because of their promising charge transport properties. The molecular conformation and self‐assembly of 2,5‐dihexadecyl‐3,6‐di(thiophen‐2‐yl)‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (TDPP‐C16) molecule have been investigated by scanning tunneling microscopy and density functional theory alculation. The TDPP‐C16 molecules adsorb with their optimized S‐shaped conformation and form a zipper‐like pattern on highly oriented pyrolytic graphite surface. R and S rotated structures are observed. The nanostructure is dominated by intermolecular double hydrogen bonds between C═O of the DPP units and hydrogen atom of thiophene rings in the neighboring molecules in each row. Atomic force microscopy and density functional theory calculation also display the existence of strong intermolecular hydrogen bonding. The results provide molecular evidence for the intermolecular interactions of the surface structure, which could benefit to the design of the organic semiconducting materials and understanding of underlying principle of charge transfer process. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
137.
Molecular-scale electronics has now been enriched by the discovery that molecules, studied singly by scanning tunneling spectroscopy, or a large array of those molecules, studied in parallel as a Langmuir-Blodgett monolayer between metal electrodes, exhibit rectification, i.e., an asymmetric current as a function of applied voltage.This asymmetry can come, first, from work function differences between two dissimilar metals or the metal-molecule interfaces (Schottky barriers), second from an asymmetric placement of the chromophore between the two metal electrodes, and third, from an asymmetry of the molecular orbitals of the molecule.This third, electronic origin of rectification, first proposed by Aviram and Ratner in 1974, and confirmed in the work reported here, gives us hope that, not too many years from now, molecules can form the basis of ultra-small yet ultra-fast electronic devices and integrated circuits.  相似文献   
138.
Recent experimental and theoretical studies have proposed that enzymes involve networks of coupled residues throughout the protein that participate in motions accompanying chemical barrier crossing. Here, we have examined portions of a proposed network in dihydrofolate reductase (DHFR) using quantum mechanics/molecular mechanics simulations. The simulations use a hybrid quantum mechanics‐molecular mechanics approach with a recently developed semiempirical AM1‐SRP Hamiltonian that provides accurate results for this reaction. The simulations reproduce experimentally determined catalytic rates for the wild type and distant mutants of E. coli DHFR, underscoring the accuracy of the simulation protocol. Additionally, the simulations provide detailed insight into how residues remote from the active site affect the catalyzed chemistry, through changes in the thermally averaged properties along the reaction coordinate. The mutations do not greatly affect the structure of the transition state near the bond activation, but we observe differences somewhat removed from the point of C? H cleavage that affect the rate. The mutations have global effects on the thermally averaged structure that propagate throughout the enzyme and the current simulations highlight several interactions that appear to be particularly important. © 2014 Wiley Periodicals, Inc.  相似文献   
139.
At this paper a field effect transistor based on graphene nanoribbon (GNR) is modeled. Like in most GNR-FETs the GNR is chosen to be semiconductor with a gap, through which the current passes at on state of the device. The regions at the two ends of GNR are highly n-type doped and play the role of metallic reservoirs so called source and drain contacts. Two dielectric layers are placed on top and bottom of the GNR and a metallic gate is located on its top above the channel region. At this paper it is assumed that the gate length is less than the channel length so that the two ends of the channel region are un-gated. As a result of this geometry, the two un-gated regions of channel act as quantum barriers between channel and the contacts. By applying gate voltage, discrete energy levels are generated in channel and resonant tunneling transport occurs via these levels. By solving the NEGF and 3D Poisson equations self consistently, we have obtained electron density, potential profile and current. The current variations with the gate voltage give rise to negative transconductance.  相似文献   
140.
K.T. Park  V. Meunier  M.H. Pan  N.-H. Yu 《Surface science》2009,603(20):3131-14972
We combined scanning tunneling microscopy and density functional theory to establish the structure-functionality relationship for nanometer-sized defects on TiO2(1 1 0). Three-angstrom high topographically distinct dots are ascribed to stoichiometric TiO2 nanoclusters with low coordination numbers. The under-coordinated O atoms of the nanocluster, with surface O atoms, provide exceptionally strong binding sites for Au nanoparticles. Our atomistic model elucidates a number of characteristics salient to low temperature CO oxidation by Au nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号