首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   3篇
  国内免费   8篇
化学   26篇
晶体学   1篇
物理学   156篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   7篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   6篇
  2013年   2篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   16篇
  2008年   5篇
  2007年   25篇
  2006年   27篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   9篇
  2001年   9篇
  2000年   14篇
  1999年   7篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1987年   1篇
  1981年   2篇
排序方式: 共有183条查询结果,搜索用时 31 毫秒
41.
The surface band bending in ZnSe(0 0 1), as a function of the temperature, is investigated both in the valence band (by photoemission) and in the conduction band (by inverse photoemission and absorbed current spectroscopies). Two different mechanisms are invoked for interpreting the experimental data: the band bending due to surface states, and the surface voltage induced by the incident beam. While the latter is well known in photoemission (surface photovoltage), we demonstrate the existence of a similar effect in inverse photoemission and absorbed current spectroscopies, induced by the incident electrons instead of photons. These results point to the importance of considering the surface voltage effect even in electron-in techniques for a correct evaluation of the band bending.  相似文献   
42.
The layered In4Se3 system does have a bulk band structure (i.e. discernable and significant band dispersion) perpendicular to the cleavage plane. Band widths (the extent of dispersion) of 300 meV or more are observed, for In-p and Se-p weighted bands within the valence region, and is indicative of a bulk band structure. Two-dimensionality of state is clearly not conserved, and there must exist interactions between layers sufficient to support a bulk band structure.  相似文献   
43.
44.
J.R. Ahn  K.-S. An 《Surface science》2006,600(12):2501-2504
The surface electronic structure of Sb/Si(1 1 3)2 × 5 was investigated by angle-resolved photoemission spectroscopy experiments. This reveals Sb/Si(1 1 3)2 × 5 to have three surface bands with anisotropic two-dimensional characteristics. The band widths of the surface bands along is larger than along . The number of surface bands of Sb/Si(1 1 3)2 × 5 and their band dispersions along and are quite analogous with those of Sb/Si(1 1 3)2 × 2 composed of Sb adatom and Si tetramer chains. The electronic structure analogy suggests that Sb/Si(1 1 3)2 × 5 and Sb/Si(1 1 3)2 × 2 have common building blocks such as Sb adatom and Si tetramer chains.  相似文献   
45.
The ternary hafnium silicon arsenide, Hf(SixAs1−x)As, has been synthesized with a phase width of 0.5?x?0.7. Single-crystal X-ray diffraction studies on Hf(Si0.5As0.5)As showed that it adopts the ZrSiS-type structure (Pearson symbol tP6, space group P4/nmm, Z=2, a=3.6410(5) Å, c=8.155(1) Å). Physical property measurements indicated that it is metallic and Pauli paramagnetic. The electronic structure of Hf(Si0.5As0.5)As was investigated by examining plate-shaped crystals with laboratory-based X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (PES). The Si 2p and As 3d XPS binding energies were consistent with assignments of anionic Si1− and As1-. However, the Hf charge could not be determined by analysis of the Hf 4f binding energy because of electron delocalization in the 5d band. To examine these charge assignments further, the valence band spectrum obtained by XPS and PES was interpreted with the aid of TB-LMTO band structure calculations. By collecting the PES spectra at different excitation energies to vary the photoionization cross-sections, the contributions from different elements to the valence band spectrum could be isolated. Fitting the XPS valence band spectrum to these elemental components resulted in charges that confirm that the formulation of the product is Hf2+[(Si0.5As0.5)As]2−.  相似文献   
46.
The theory of angle resolved photoemission for in general disordered complex lattices of semi-infinite solid systems is presented. An application of this theory to the He-I off-normal photoemission spectra from TiN0.83 (100) reveal the same kind of vacancy-like related peaks observed for powder samples in angle integrated spectra in the UPS and XPS regime.Dedicated to Professor H. Nowotny on the occasion of his 75th birthday  相似文献   
47.
The electronic structure of LiMnO2 and Li2MnO3 was studied by means of X-ray photoelectron and soft X-ray emission spectroscopy. For LiMnO2, LSDA and LSDA+U calculations were carried out. The LSDA+U calculations are in rather good agreement with the measured valence-band structure as well as with the magnetic and electrical properties of LiMnO2. It is shown that the band gap in LiMnO2 is determined by the charge-transfer effect. Received 15 March 1999 and Received in final form 14 July 1999  相似文献   
48.
49.
Full k -maps of the electronic structure near the Fermi level of differently doped cuprates measured with angle-scanned photoelectron spectroscopy are presented. The valence band maximum of the antiferromagnetic insulator Sr2CuO2Cl2, which is taken as a representative of an undoped cuprate, and the Fermi surfaces of overdoped, optimally doped and underdoped Bi2Sr2CaCu2O8+δ high-temperature superconductors are mapped in the normal state. The results confirm the existence of large Luttinger Fermi surfaces at high doping with a Fermi surface volume proportional to (1+x), where x is the hole concentration. At very low doping, however, we find that this assumption based on Luttinger's theorem is not fulfilled. This implies a change in the topology of the Fermi surface. Furthermore the intensity of the shadow bands observed on the Fermi surface of Bi2Sr2CaCu2O8+δ as a function of the doping is discussed. Received 12 October 1999 and Received in final form 12 April 2000  相似文献   
50.
本文利用X射线谱研究了吡嗪(C4H4N2)分子共价吸附于硅(100)面的几种吸附构型的几何结构和电子结构. 利用密度泛函理论结合团簇模型,对预测的吸附结构的碳K壳层(1s)X射线光电子能谱(XPS)和近边X射线吸收精细结构(NEXAFS)谱进行了模拟. 计算结果阐明了XPS和NEXAFS谱与不同吸附构型的对应关系. 与XPS谱相比,NEXAFS谱对所研究的吡嗪/硅(100)体系的结构有明显的依赖性,可以很好地用于结构鉴定. 根据碳原子的分类,研究了在NEXAFS光谱中不同化学环境下碳原子的光谱成分.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号